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Abstract

DUALITIES IN M-THEORY AND BORN-INFELD THEORY

by

Daniel Brace

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Bruno Zumino, Chair

We discuss two examples of duality. The �rst arises in the context of toroidal

compacti�cation of the discrete light cone quantization of M-theory. In the pres-

cence of nontrivial moduli coming from the M-theory three form, it has been con-

jectured that the system is described by supersymmetric Yang-Mills gauge theory

on a noncommutative torus. We are able to provide evidence for this conjecture,

by showing that the dualities of this M-theory compacti�cation, which correspond

to T-duality in Type IIA string theory, are also dualities of the noncommutative

supersymmetric Yang-Mills description. One can also consider this as evidence for

the accuracy of the Matrix Theory description of M-theory in this background.

The second type of duality is the self-duality of theories with U(1) gauge �elds.

After discussing the general theory of duality invariance for theories with complex
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gauge �elds, we are able to �nd a generalization of the well known U(1) Born-Infeld

theory that contains any number of gauge �elds and which is invariant under the

maximal duality group. We then �nd a supersymmetric extension of our results,

and also show that our results can be extended to �nd Born-Infeld type actions

in any even dimensional spacetime.

Chair Date
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Chapter 1

Introduction and Outline

String theory is the most promising candidate for a uni�ed theory of gravity and

the other interactions already present in the standard model of particle physics.

Five consistent string theories are known to exist in ten dimensions. One of them

is an open unoriented superstring theory called Type I. There are two closed

superstring theories called Type IIA and Type IIB, depending on whether the

GSO projection on left and right movers leads to a nonchiral or chiral space-

time theory. Finally there are two heterotic string theories, one with gauge group

SO(32) and one with gauge group E8 � E8. Lower dimensional string theories

can then be obtained by compacti�cation on a small manifold. Due to the large

number of resulting theories it seemed that one of the initial promising features

of string theory, its uniqueness, was lost. Furthermore, some of these theories do

not have a unique classical vacuum, and perturbative corrections do not remove

this degeneracy.

Some hope existed that nonperturbative corrections would select a speci�c

vacuum, perhaps the one describing our world. However, only a perturbative

formulation of these string theories is available, and it seemed until recently that

no real progress could be made without a full nonperturbative formulation of
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string theory. Nevertheless, access to nonperturbative aspects of string theories

was possible though an analysis of their low energy formulation as supergravity

theories. Any relations between the �ve known string theories would have to be

mirrored by their low energy descriptions. These relations are known as duality.

It has been known for some time that supergravity theories in four dimensions

with extended supersymmetry are self-dual. For example, Cremmer and Julia [1]

showed that the N = 8 supergravity theory is invariant under a noncompact E7

duality group. In fact, the requirements of self-duality and supersymmetry greatly

facilitated �nding the correct form of the N = 8 supergravity Lagrangian.

A simple example of a self-dual theory is electromagnetism without matter.

The equations of motion and the Bianchi identity for electromagnetism are

@�F
�� = 0 ; @�

eF �� = 0

where eF �� = 1

2
�����F�� is the Hodge dual of the �eld strength. One can see

immediately, that the equations of motion and Bianchi identities remain valid

when one replaces the �eld strength with its dual, and thus the theory is said to

be self-dual. In fact, the theory is invariant under a continuous SO(2) duality

group which rotates the �eld strength and its dual.

Shortly after the appearance of duality in extended supergravity [2, 1] the

theory of duality invariance of theories with abelian gauge �elds was developed

in [3, 4]. However, there are very few examples of duality invariant interacting

gauge theories where the Lagrangian is known in closed form. The most famous
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is the Born-Infeld theory [5, 6, 7, 8, 9, 10] and in the latter part of this thesis we

study its generalization to more than one abelian gauge �eld.

The self-duality found in four dimensional extended supergravity can be un-

derstood as arising from duality structure of string theory, although in practice it

is the duality structure of supergravity theories that has helped in understanding

the dualities of string theory. In higher dimensions, a large number of nonpertur-

bative supergravity solutions were found and used to access the strong coupling

regime of string theory. This is possible in theories with extended supersymmetry

by using the so called BPS states, which are states in small representations of the

supersymmetry algebra. Since the dimension of these representations is an integer

which cannot vary continuously, the states in these short multiplets cannot leave

the representation as one changes continuous parameters, such as the coupling

constant. Most importantly, for BPS states the supersymmetry algebra requires

that certain relations between the masses and charges be satis�ed, and this allows

one to know the masses of these states even at strong coupling.

An important discovery due to Polchinski [11] was that the nonperturbative

solutions of the low energy supergravity theories which carry Ramond-Ramond

charges could be understood, in terms of the world sheet conformal �eld theory

describing the string dynamics, as hypersurfaces in space-time where strings can

end. These hypersurfaces are named Dirichlet branes or D-branes for short.

The surprise came in 1995 when it was realized [12, 13] that most of the known

string theories at strong coupling were not new, strange and hard to understand
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theories, but in fact were described by other already known string theories. This

relation between di�erent string theories is known as string duality. Evidence for

these dualities can be obtained by trying to identify in one theory nonperturbative

massive BPS states which, when followed to strong coupling, become light, and

can be identi�ed as the fundamental degrees of freedom of the dual theory. All the

known string theories were uni�ed into a web of theories with each theory at strong

coupling or small volume equivalent to another theory at weak coupling or large

volume. The relation between large and small volume theories had been known

since the late nineteen-eighthes as target space duality or T-duality. For example

Type IIA and Type IIB are T-dual to each other after toroidal compacti�cation.

A more complicated version of target space duality occurs for compacti�cation on

Calabi-Yau spaces and is known as mirror symmetry. A further uni�cation discov-

ered by Strominger [14] involves theories compacti�ed on Calabi-Yau manifolds of

di�erent topology. String theory can move continuously from one such theory to

another using the the conifold transition. This is a mechanism involving massless

black hole condensation.

However, not all the corners of this web were described by known string the-

ories. In one particular corner describing the strong coupling dual of Type IIA

string theory there is an eleven dimensional theory whose low energy description

was given by eleven dimensional supergravity. This is the theory with the largest

allowed number of supercharges, but it is nonrenormalizable. It was conjectured

that there exists a consistent eleven dimensional theory, called M-theory, such that

4



its low energy is eleven dimensional supergravity. Sometimes the name M-theory

is used to describe the whole web and sometimes only the strong coupling dual of

the Type IIA string.

The main thrust of the �rst part of this thesis is the study of a certain compact-

i�cation of M-theory, which we will describe shortly, in the presence of arbitrary

moduli. The main mathematical ingredient in this study to which we turn next

is noncommutative geometry. A classic mathematical result of Gel'fand states

that compact topological spaces are in one-to-one correspondence with commu-

tative C�-algebras. In one direction, to a topological space X, one can associate

the algebra of continuous functions C(X). Conversely and rather nontrivially,

the spectrum of a commutative C�-algebra is equivalent to a compact topological

space. This important result allows for a dual description of topological spaces

and brings powerful algebraic methods into the realm of topology. On the other

hand, if one drops the commutativity requirement, a C�-algebra A describes what

is called by correspondence a quantum space.

To illustrate, consider the algebra of functions on a two-torus C(T 2). An

arbitrary element f of this algebra has the Fourier expansion

f =
X
k;l2Z

fk;lU
k
1
U l
2
; (1.1)

where Ui = e�i are the generators of this algebra. In general some restrictions are

imposed on the c-number coeÆcients fk;l (such as they form a square-summable or

rapidly decreasing sequence). Very importantly (1.1) is a global statement. In the
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opposite direction, if we know that all the algebra elements have the form (1.1), we

immediately recognize that they can be identi�ed with functions on a two-torus.

Thus one can read the topological compact space from the commutative algebra.

Since �i are local coordinates on the torus, the generators Ui commute. Instead

we can consider the algebra whose elements have the form (1.1) but with Ui's

satisfying

U1U2 = e2�i�U2U1; (1.2)

where �, also called the deformation parameter, is a real number. This algebra is

known as the algebra of `functions' on the noncommutative torus.

Just as one can de�ne a �eld theory on a commutative space, one can also do so

on a noncommutative space. The �rst part of this thesis is devoted to investigating

the conjecture of Connes, Douglas and Schwarz, which states that supersymmetric

Yang-Mills gauge theory on noncommutative tori provide a description of the

toroidal compacti�cation of the discrete light cone quantization of M-theory.

1.1 Toroidal Compacti�cation of the DLCQ of M-theory

One of the strongests candidate descriptions of M-theory was provided by

Banks, Fishler, Shenker and Susskind (BFSS) in [15]. Instead of thinking of the

Matrix model as an auxiliary theory used for regulating a membrane theory, they

conjectured that the large n Matrix model is M-theory. Membranes are then

obtained as low energy excitations, but the Matrix model also describes a host
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of other states such as M5-branes, or after compacti�cation to lower dimensions,

strings and D-branes. A further re�nement of the BFSS conjecture was given by

Susskind [16], who proposed that each momentum sector of the discrete light cone

quantization (DLCQ) of M-theory is described by a maximally supersymmetric

Matrix model with the momentum identi�ed with the rank of the gauge group.

The conjecture was further clari�ed by Sen and Seiberg [17, 18]. They used an

in�nite boost and a compensating rescaling to show that the DLCQ Hamiltonian

of the original M-theory, where the light-cone variable is identi�ed with period L,

is given by the Hamiltonian of an auxiliary M-theory compacti�ed on a vanishingly

small space-like circle of radiusR. This is then equivalent to a weakly coupled Type

IIA string theory, which will be referred to, following Sen [19], as the auxiliary

Type II string theory. At the same time, the original light-cone momentum is

mapped into Ramond-Ramond D0 brane charge. The string coupling and string

mass scale are given by the R! 0 limit of

gS =M
3=2
P (LR)3=4; mS =M

3=2
P L3=4R�1=4;

where MP is the eleven dimensional Planck mass.

In this limit as proposed by Witten [20], and discussed extensively in [21], the

excited string states decouple and the dynamics of n D0 branes is determined by

the maximally supersymmetric Matrix model [22, 23, 24].

Toroidal compacti�cation of M-theory can be obtained by considering Matrix

theory on the covering space of the torus and imposing a periodicity constraint on
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the dynamical variables [15, 25, 26]. The constrained system is formally equivalent

to a U(n) super Yang-Mills (SYM) gauge theory on a dual torus. On the other

hand, upon compacti�cation on a d-dimensional torus T d, M-theory has additional

moduli from the three form of eleven dimensional supergravity. Connes, Douglas

and Schwarz [27], conjectured that these moduli correspond to the deformation

parameters �ij of a noncommutative super Yang-Mills (NCSYM) gauge theory.

Further studies of this subject followed in [28, 29, 30, 31, 32, 33, 34, 35, 36, 37,

38, 39, 40, 41].

In [27], where compacti�cation on a two-torus was considered in some detail,

it was suggested that the SL(2;Z) noncommutative duality group of the NCSYM

gauge theory [42, 43, 44, 45, 46] corresponds to the T-duality in the DLCQ direc-

tion and one of the space-like compact directions of M-theory. However, Rie�el

and Schwarz [34] later showed that NCSYM gauge theories on higher dimensional

tori have an SO(d; d jZ) duality, and conjectured that this is the realization, in

the NCSYM theory, of the auxiliary Type II string theory T-duality.

In general, as will be extensively discussed in the �rst part of this thesis, two

NCSYM theories are dual to each other if there exists an element � of the duality

group SO(d; d jZ) with the block decomposition1

� =

0B@ A B
C D

1CA ; (1.3)

1The SO(d; d jZ) subgroup of the T-duality group O(d; d jZ) is the subgroup that does not

exchange Type IIA and IIB string theories.
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such that their de�ning parameters are related as follows

�� = (A�+ B)(C� +D)�1; (1.4)

�Gij = (C�+D)ik(C�+D)jlGkl; (1.5)

�g2SYM =
q
j det(C�+D)j g2SYM ; (1.6)

�� = S(�)�; (1.7)

�� = S(�)�: (1.8)

Here S(�) denotes the Weyl spinor representation of �. The deformation

parameter of the noncommutative torus � is a d-dimensional antisymmetric ma-

trix, Gij is the metric de�ning the torus of the NCSYM, and gSYM is the gauge

coupling constant. The integral chiral spinor � contains the Chern numbers of

the bundle. For example, for compacti�cation on a three torus, � contains the

rank of the group and the magnetic 
uxes, and for a four torus it also includes

the instanton number. The chiral spinor � in (1.8) determines the parameters of

the Chern-Simon type terms which can be added to the NCSYM action. In the

auxiliary Type IIA string theory, � is closely related to the R-R moduli.

The relation (1.4) was �rst written in [34]. Equation (1.7) appeared in [38]

where S(�) was identi�ed as a canonical transformation and was independently

found in [47] and identi�ed as a chiral spinor transformation. Equation (1.5) was

implicit in [38] and was �rst written in [47] where equation (1.6) was also derived.

Finally, deriving (1.8) was the main thrust of [48].

The �rst part of this thesis is an investigation of this duality conjecture and
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some of its consequences. In Chapter 2, an extension of the method used in [36, 40]

will be employed to construct twisted bundles over two and three-tori. Then we

will explain in some detail how to solve the boundary conditions for sections in the

fundamental and adjoint quantum bundle. Using the special form of the transition

functions in the given gauge, we will �nd di�erent equivalent forms of the general

solution for fundamental sections.

In Chapter 3, we will show explicitly how to construct an action of the duality

group SO(d; d jZ) on NCSYM theories. Under these duality transformations, the

rank of the gauge group and the magnetic 
ux numbers transform together in a

Weyl spinor representation, and the deformation parameters transform by frac-

tional transformations. We will also obtain the transformation properties, under

the duality group, of the gauge coupling and the metric. One can then directly

compare these relations with the string theory T-duality predictions. We will then

discuss the more abstract language of projective modules, as presented in [27] and

references therein, and give the explicit map between this formulation and the

more elementary formulation in [36, 47]. We will also explain the notion of Morita

equivalence [42, 27, 34, 38, 39] applied to our speci�c case2. Finally, we will end

the chapter with a discussion of the general theory of gauge transformations on

the noncommutative torus and �nd an explicit gauge transformation that trivial-

izes one of the transition functions. With trivial transition functions, T-duality

2For an expanded coverage of noncommutative geometry, see [66] and for a brief description

see [67].
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transformations take the standard form, allowing us to interpret the expectation

value of the gauge �eld as the location of the D-strings on the dual torus.

In Chapter 4, we will include nonvanishing Chern-Simon couplings. The values

of the Chern-Simon couplings are determined by the Ramond-Ramond moduli of

the compacti�cation. One �nds perfect agreement between the transformation

properties of the couplings derived from NCSYM or the auxiliary Type II string

theory.

In Chapter 5, we will study the BPS spectrum corresponding to electric 
uxes

of the noncommutative supersymmetric Yang-Mills (NCSYM) gauge theory [49]

compacti�ed on a torus. This gives a description of the BPS spectrum of the

DLCQ of M-theory compacti�ed on a dual torus. Since the spectrum is invariant

under the T-duality group O(d; d jZ), where d is the dimension of the compact-

i�cation torus, one can �rst calculate the spectrum in the simplest case, which

corresponds to a NCSYM gauge theory on a trivial bundle. Then one can use a

duality transformation to rewrite the result in terms of the de�ning parameters of

a dual theory on a nontrivial bundle. Alternatively, one can also obtain this re-

sult directly by quantizing the free system of collective coordinates of the twisted

U(n) theory. To obtain the spectrum one has to mod out by gauge equivalent

con�gurations and show that the zero modes of the gauge �eld live on a compact

space, a torus. In the classical case, one can �nd a global gauge transformation

whose sole e�ect is a shift in the zero mode of the gauge �eld. Then the electric


uxes which are the conjugate variables are integrally quantized. However, for
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a nonvanishing deformation parameter the gauge transformation also results in

a �nite space translation [27, 50, 51, 52]. Then, just as for the electric charge

of dyons [53], by a Witten-Olive type e�ect, the electric 
ux spectrum for states

carrying momentum contains an additional term proportional to the deformation

parameter. The spectrum obtained is in agreement with the spectrum conjectured

in the literature and obtained by imposing U-duality invariance.

1.2 Non-linear Electromagnetic Duality

The remainder of this thesis is devoted to the study of self-duality. In Chapter 6

we present in some detail the theory of duality invariance for a theory of complex

gauge �elds with holomorphic duality transformations. This is an extension of the

theory of duality invariance which was developed in [3, 4] and brie
y discussed

in [54]. However, the duality group can be larger than that presented in [54]. In

fact, for a gauge theory with n complex gauge �elds, the largest possible duality

group is U(n; n). We also discuss how to obtain such a theory from a theory with

a U(n)�U(n) duality group, which is the maximal compact subgroup of U(n; n),

by introducing an additional n-dimensional matrix valued scalar �eld.

In Chapter 7, we describe a Born-Infeld Lagrangian written in terms of aux-

iliary �elds, with a U(n; n) duality group. Its form is closely related to the La-

grangian introduced in [55, 56] but di�ers in two ways. We use a di�erent reality

structure for our �elds and introduce a dynamical scalar �eld such that the duality

group is extended to a noncompact group. We �nd that it is possible to eliminate
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the auxilliary �elds using some new mathematical results concerning unilateral

matrix equations. In particular, we show that certain solutions of unilateral ma-

trix equations can be written as a sum of terms which are symmetric in the matrix

coeÆcients as well as terms which are commutators.

In the theory with auxiliary �elds, it does not seem possible to work with real

gauge �elds, but this can be done in the Lagrangian with the auxiliary �elds elim-

inated. As will be shown in Chapter 8, this leads to a Born-Infeld theory with an

Sp(2n; IR) duality group. This is the �rst example of an interacting gauge theory

whose Lagrangian is known to all orders and whose duality group is as large as the

duality group of the Maxwell theory with the same number of gauge �elds. We go

on to show how to supersymmetrize the Born-Infeld Lagrangian in the formulation

with auxiliary �elds. We also present the form without auxiliary �elds of the su-

persymmetric Born-Infeld Lagrangian with a single gauge �eld and a scalar �eld.

This theory is invariant under SL(2; IR) duality, which reduces to U(1) duality

if the value of the scalar �eld is suitably �xed. Versions of this theory without

the scalar �eld were presented in [57, 58, 59]. Finally, we generalize our construc-

tion to arbitrary even dimensions by using antisymmetric tensor �elds such that

the rank of their �eld strength equals half the dimension of space-time. First,

we consider theories with a U(n; n) duality group using complex antisymmetric

tensor �elds; then we discuss theories with real antisymmetric tensor �elds. These

have an Sp(2n; IR) duality group if half of the space-time dimension is even and

O(n; n) if it is odd. The fact that the duality group depends on half the dimension
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of space-time was discussed earlier in [60, 61, 62, 63, 64].
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Chapter 2

Super Yang-Mills on the Noncommutative Torus

In the �rst section, we review the standard toroidal Matrix compacti�cation

leading to a SYM gauge theory on the dual torus. Then we present the conjec-

ture [27] that in the presence of nonvanishing NS antisymmetric moduli Bij, the

translation generators implementing the quotient conditions do not commute, such

that Matrix compacti�cation leads to a noncommutative super Yang-Mills gauge

theory on a dual noncommutative torus.

In Section 2.3, we study adjoint quantum bundles on noncommutative tori of

arbitrary dimension which admit a constant curvature connection which is not

valued in the su(n) subalgebra and have transition functions of a special simple

form.

In Section 2.4, we show how to expand the sections of the adjoint bundle of a

U(n) gauge theory in terms of matrix valued functions on a dual noncommutative

torus. The dual deformation parameter �0 lies on the same SO(d; d jZ) orbit as

the original �. We perform most of the calculations on tori of arbitrary dimension,

but later we will concentrate on the two and three-tori.

In Section 2.5, we describe the quantum bundles corresponding to the two

dimensional compacti�cation and rewrite some of the known two dimensional re-
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lations in a form that admits immediate generalization to higher dimensions. We

also give the solution for arbitrary adjoint bundles over three dimensional tori.

In Section 2.6, we consider the noncommutative SYM action on a twisted

quantum bundle after a brief description of the quantum integral.

Finally, in Appendix A we prove a theorem showing that the chiral spinor

representations of SO(d; d jZ) are integral, and also show that the spinor repre-

sentation of SO(3; 3 jZ) is in fact SL(4;Z).

2.1 Matrix Compacti�cation

In this section we present a review of Matrix theory compacti�cation. In the

limit of large string mass the dynamics of n D0 branes, in uncompacti�ed space-

time, is determined by the maximally supersymmetric Matrix Model action [22,

23, 24],

SD0 =
1

2gS

Z
dt tr(

X
M

_XM _XM +
1

(2�)2

X
M<N

[XM ; XN ][XM ; XN ] + fermions):

This action is obtained by dimensional reduction of the ten dimensional N = 1

SYM gauge theory. Alternatively one could work with the IKKT functional [65]

obtained by dimensionally reducing, in all directions including time, the Euclidean

ten dimensional SYM action.

The compacti�cation of Matrix theory on a d-dimensional torus is obtained by

considering an in�nite number of D0 branes living on Rd, the covering space of
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the torus, and then imposing the following quotient conditions [15, 25].

U�1i XI Ui = 2�eIi +XI; i; I = 1; : : : ; d;

U�1i Xa Ui = Xa; a = d+ 1; : : : ; 9; (2.1)

U�1i  Ui =  :

The last equation in (2.1) contains the quotient condition for fermions. Here I runs

over the compact directions, and the eIi form a basis de�ning the compacti�cation

lattice. The Ui's are unitary operators. One can de�ne new matrix coordinates

X i = eiIX
I ;

which obey the simpler quotient conditions

U�1i XjUi = 2�Æji +Xj: (2.2)

In terms of the new variables the action takes the form

SD0 =
1

2gS

Z
dt Tr

 
Gij

_X i _Xj +
1

2

1

(2�)2
GijGkl[X

i; Xk][Xj; X l]+

X
a

_Xa _Xa +
1

(2�)2

X
a

Gij[X
i; Xa][Xj; Xa]+ (2.3)

1

(2�)2

X
a<b

[Xa; Xb][Xa; Xb] + fermions

1A ;
where we have introduced the metric Gij =

P
I e

I
i e

I
j . In (2.3), the trace over

in�nite dimensional matrices is formally divided by the in�nite order the quotient

group Zd.

The original solution of the quotient condition assumed that the translation

operators commute

[Ui;Uj] = 0:
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The standard way to solve (2.2) is to introduce an auxiliary Hilbert space on which

X i's and Ui's act. In the simplest case this is taken to be the space of functions

on a d-dimensional torus taking values in Cn. Then if one lets the Ui's be the

generators of the algebra of functions on the torus

Ui = ei�i ;

where �i are coordinates on the covering space of the torus, theX
i's satisfying (2.2)

must be covariant derivatives

Xj = �2�iDj = �2�i(@j � iAj(Uk)): (2.4)

The partial derivative is with respect to �j, and A
j are n-dimensional hermitian

matrices. The action (2.3) can be rewritten as a d-dimensional SYM action, by

replacing the X i's with covariant derivatives as above, and rewriting the trace over

the in�nite dimensional matrices as

Tr =
Z

dd�

(2�)d
tr:

Here tr is an n-dimensional trace, and the new coordinates �i are to be integrated

from zero to 2�. The action becomes

SD0 =
(2�)

2�d

4gS
q
det(Gij)

Z
dt

Z
dd�

q
det(Gij) tr

�
G��G��[D

�; D�][D� ; D�]�

X
a

G��[D
�; Xa][D�; Xa] +

X
a<b

[Xa; Xb] [Xa; Xb] + fermions
�
;

where the scalar �elds Xa have been rescaled by a factor of 2�. We have written
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the action in standard form1 so that one can read o� the SYM gauge coupling

g2SYM = gS (2�)d�2
q
det(Gij): (2.5)

Thus the gauge coupling g2SYM equals the string coupling on the T-dual torus.

The square root factor accounts for the expected dilaton shift under T-duality.

Following [27] we consider the general case when the unitary operators Ui do

not commute. Consistency of the quotient conditions requires that the Ui's must

commute up to a phase

UiUj = e�2�i�ijUjUi: (2.6)

Connes, Douglas and Schwarz conjectured that the deformation parameters �

correspond to certain moduli of the compacti�cation of the DLCQ of M theory on

tori. If 
ij� represents a three cycle wrapped around the transversal directions xi

and xj and the light cone direction x�, then

�ij =
1

(2�)3

Z

ij�

C;

where C is the antisymmetric three form of eleven dimensional supergravity. Writ-

ten in terms of the auxiliary type IIA string theory variables,

�ij =
1

(2�)2

Z

ij
B;

1Note that the positions of all the indices are switched. For example the metric has upper

indices. This just re
ects the performed T-duality under which the metric is replaced with the

inverse metric. Another way to understand the index position is that T-duality is a canoni-

cal transformation which exchanges coordinates and momenta and therefore reverses the index

structure.
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where B is the NS two form.

Next we give a heuristic explanation of the noncommutativity of the translation

generators (2.6). Consider for simplicity compacti�cation on T 2 and assume that

there is only one D0-brane. Then the covering space depicted in �gure 2.1 contains

an in�nite number of T 2 cells labeled by two integers. The matrix element X i
pq

is associated to the oriented string starting on the D0-brane at q = (q1; q2) and

ending on the D0-brane at p = (p1; p2). We de�ne the translation operators such

that their matrix elements are given by

(U1)pq = Æp1;q1�1 Æp2;q2; (2.7)

(U2)pq = Æp1;q1 Æp2;q2�1:

The translation generators then commute since each acts trivially in one subspace.

Next consider the e�ect of turning on the modulus B = B12dx
1dx2. Since the

covering space is topologically trivial and B12 is constant one can eliminate it by

a gauge transformation

B0 = B + d�; (2.8)

where for example � = B12x2dx
1. Eliminating B comes at a price. One must

modify the operators Ui implementing the periodicity condition.

Just as the wave function of a charged particle changes under electromagnetic

gauge transformations

 0(x) = ei�(x) (x);

the wave functional of strings 	[�], where � is the curve where the string is located,
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1

2 p

q

Figure 2.1: The covering space of T 2 with one D0-brane per cell

must transform under the gauge transformation (2.8) as

	0[�] = e
i
2�

R
�
� 	[�]:

For the choice of � made above the wave functional of each string acquires the

phase exp(i=2�B12

R
x2 dx1). The exponent is just the area under the string so

the relative phase of strings related by a translation in the x1 direction vanishes.

For the x2 direction the relative phase is exp(2�i�12(p1 � q1)). This requires a

rede�nition of the translation generators

(U1)pq = Æp1q1�1 Æp2q2; (2.9)

(U2)pq = e�2�i�12q1Æp1q1 Æp2q2�1:

Then a direct computations shows that the Ui's satisfy (2.6).

In the noncommutative case it is convenient to introduce another set of trans-

lation operators Ui which satisfy

UiUj = e2�i�ijUjUi: (2.10)
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The Ui's generate the algebra of functions on a quantum torus. We denote this

algebra, A�. Also note that the Ui's are the generators of A(��). An expanded

discussion of this and other issues in noncommutative geometry can be found

in [66, 67].

This algebra can be realized as a subalgebra of the quantum plane algebra,

which is generated by �i satisfying

[�i; �j] = �2�i�ij: (2.11)

Then one can realize the generators of A� as

Ui
def
= ei�i :

To realize the Ui generators we also introduce partial derivatives satisfying2

[@i; �j] = Æij; [@
i; @j] = 0:

Now one can write the Ui generators as

Ui = ei�i�2��ij@
j

:

Note that both �i and @
i act as translation generators on the �i's, and the exponent

in the Ui's is just the linear combination that commutes with all the �i's. Thus

[Ui; Uj] = 0:

For vanishing � one sees that Ui and Ui coincide.
2Just as in the classical case, one can also introduce quantum exterior forms d�i, which

anti-commute with each other and commute with all other variables.
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The simplest example of solutions of the quotient conditions (2.2) are quantum

connections on trivial bundles

Xj = �2�iDj = �2�i(@j � iAj(Uk)): (2.12)

In the noncommutative case the matrix elements of Aj are elements of A�. Again

using the representation (2.12) of X i in the Matrix model action one obtains a

NCSYM action [49]. However we postpone writing this action until we study more

general solutions which are connections on nontrivial bundles.

For the commutative case, matrix compacti�cation on T d results in a SYM

gauge theory in d+ 1 dimensions on the dual torus. In the limit when the size of

the original torus vanishes the dual torus becomes Rd, therefore one obtains the

opposite of dimensional reduction. If one starts from a Euclidean 10-dimensional

SYM and dimensionally reduces in all directions including the Euclidean time

one obtains the IKKT [65] functional. Matrix compacti�cation of one direction

in the IKKT functional results in the �nite temperature action of the original

theory (2.3).

2.2 Twisted Quantum Bundles on T 2

There exist more general solutions of the quotient conditions (2.2) which are

connections on twisted bundles. They correspond to compacti�cation of the DLCQ

of M-theory in the presence of transversely wrapped membranes. Again the solu-

tion is a sum of two terms, a constant curvature connection ri and a 
uctuating

23



part

X i = �2�i(ri � iAi(Zj)); (2.13)

Xa = Xa(Zi);

 =  (Zi):

Here the Zi's are n�n matrices with operator entries and, just like the eUi's for the

trivial bundle, commute with the Ui's, but now are sections of the twisted bundle

whose exact form will be discussed shortly. However, while for the trivial bundle

Ai, Xa and the spinorial components of  are n � n matrix functions, in (2.13)

Ai,Xa and the components of  are one-dimensional functions but with matrix

arguments. Later, this will allow us to establish a relationship between a SYM on

a twisted U(n) bundle and one on a U(1) bundle.

In this chapter we concentrate for simplicity on the two dimensional case.

Following [36], up to a gauge transformation the constant curvature connection

can be written as

r1 = @1; r2 = @2 � if�1; (2.14)

where f is the constant �eld strength

[r1;r2] = �if:

Such a gauge �eld can only exist in a non-trivial bundle. One can introduce

transition functions 
i such that the sections of the fundamental bundle satisfy

the twisted boundary conditions

�(�1 + 2�; �2) = 
1(�1; �2) �(�1; �2); (2.15)
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�(�1; �2 + 2�) = 
2(�1; �2) �(�1; �2):

Similarly the adjoint sections satisfy

	(�1 + 2�; �2) = 
1(�1; �2) 	(�1; �2) 
1(�1; �2)
�1; (2.16)

	(�1; �2 + 2�) = 
2(�1; �2) 	(�1; �2) 
2(�1; �2)
�1:

Consistency of the transition functions of the bundle requires that


1(�1; �2 + 2�) 
2(�1; �2) = 
2(�1 + 2�; �2) 
1(�1; �2): (2.17)

This relation is known in the mathematical literature as the cocycle condition.

The covariant derivatives transform just as the adjoint sections

ri(�1 + 2�; �2) = 
1(�1; �2) ri(�1; �2) 
1(�1; �2)
�1;

ri(�1; �2 + 2�) = 
2(�1; �2) ri(�1; �2) 
2(�1; �2)
�1:

A particular solution for the transition functions compatible with the constant

curvature connection (2.14) and satisfying the cocycle condition is given by


1 = eim�2=nU; 
2 = V; (2.18)

where U; V are n� n unitary matrices satisfying

UV = e�2�im=nV U:

Using the representation given in [36] one has

Ukl = e2�ikm=nÆk;l; Vkl = Æk+1;l;
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where the subscripts are identi�ed with period n.

One can express the above matrices in terms of the standard 't Hooft matri-

ces [68] denoted here by U 0 and V 0 and satisfying

U 0V 0 = e�2�i=nV 0U 0; U 0n = V 0n = 1:

The relation is given by

U = e2�im=nU 0m; V = V 0: (2.19)

The phase in (2.19) is due to the nonstandard de�nition of U used in [36]. This

has certain advantages but similar phases will appear when comparing the results

of [36] with similar results where the standard 't Hooft matrices were used. We

also introduce a unitary matrix K which changes the representation so that V 0 is

diagonal, and satis�es

KU 0K�1 = V 0�1; KV 0K�1 = U 0: (2.20)

Note that n is quantized since one is considering a U(n) gauge theory and m

is quantized since the magnetic 
ux f through T2 is quantized

2�f =
m

n +m�
;

where � = �12. In M-theory m is the transversal membrane wrapping number.

One can solve the boundary conditions (2.15) for the fundamental sections as

in [36] generalizing a previous result for m = 1 in the commutative case presented

in [26]. Using the ordered exponential explained below, the general solution has
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the form

�k(�1; �2) =
X
s2Z

mX
j=1

E

�
m

n

�
�2

2�
+ k + ns

�
+ j; i�1

� b�j ��2
2�

+ k + ns+
nj

m

�
:

The ordered exponential [36] is de�ned for two variables whose commutator is a

c-number

E(A;B) =
1

1� [A;B]

1X
l=0

1

l!
AlBl:

The normalization is such that

E(�B;A)E(A;B) = 1

and it has the following desirable properties similar to the usual exponential

E(A + c; B) = E(A;B)ecB; (2.21)

E(A;B + c) = ecAE(A;B):

The b�j functions are de�ned on the whole real axis and are unrestricted except for

the behavior at in�nity. They should be considered as vectors in a Hilbert space

on which all the elements of the algebra are represented.

Next we explain in some detail how to obtain this result. First de�ne

�(�1; �2)
def
= �k(�1; �2 � 2�(k � 1)):

The second boundary condition (2.15) implies that the de�nition of � is consistent,

i.e. k-independent. Using V n = 1 one also �nds that � is a periodic function in

�2

�(�1; �2 + 2�n) = �(�1; �2):
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The other boundary condition gives

�(�1 + 2�; �2) = eim(�2+2�)=n�(�1; �2):

It is convenient to separate out a factor to eliminate the above twist

�(�1; �2) = f(�1; �2)��(�1; �2)

and to require a simpler periodicity condition for ��

��(�1 + 2�; �2) = ��(�1; �2):

Then the function f must satisfy

f(�1 + 2�; �2) = eim(�2+2�)=nf(�1; �2):

This is satis�ed exactly for

f(�1; �2) = E

�
m

n

�
�2

2�
+ 1

�
; i�1

�
;

where the ordered exponential de�ned above was used in the right hand side. One

can Fourier transform �� in �1

��(�1; �2) =
X
p2Z

eip�1 �p(�2)

and using the property (2.21) of the ordered exponential one obtains

�(�1; �2) =
X
p2Z

E

�
m

n

�
�2

2�
+ 1

�
+ p; i�1

�
�p(�2):

Let p = ms + j with j = 1; : : : ; m and s is an integer. Then the solution can be

written as

�(�1; �2) =
X
s2Z

mX
j=1

E

�
m

n

�
�2

2�
+ 1

�
+ms + j; i�1

�
�s;j(�2);
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where �s;j
def
= �ms+j. Periodicity in �2 then implies �s�1;j(�2 + 2�n) = �s;j(�2)

so that using this recursively one has �s;j(�2) = �0;j(�2 + 2�ns). Finally after

de�ning e�j(x) def
= �0;j(2�(x� 1)) one obtains

�k(�1; �2) =
X
s2Z

mX
j=1

E

�
m

n

�
�2

2�
+ k + ns

�
+ j; i�1

� e�j � �2
2�

+ k + ns

�
:

This is the result mentioned above up to another rede�nition

e�j(x) = b�j(x+ n

m
j):

While the solutions for the sections of the fundamental bundle given in [36] are

suitable for showing the equivalence to the projective modules of [27] as will be

discussed in Section 3.3, the appearance of the ordered exponential is somewhat

inconvenient. Using the special form of the transition functions one can rewrite the

solution in an equivalent but simpler form. The transition functions in this gauge

do not contain �1 and it is convenient to order all �1 to the right in the solution.

Using V n = 1 in the second condition (2.15) one can express all n components of �

in terms of a single function with period 2�n in �2. After Fourier transforming in

�2 and imposing both boundary conditions (2.15) one obtains the general solution

�k(�1; �2) =
X
p2Z

e2�i(�2=2�+k)p=n e2�i(�1=2��p=m)m=n b'p(�1=2� � p=m);

where only m of the b'p functions are independent, since
b'p+m(x) = b'p(x):

Using the same technique one can show that an arbitrary adjoint section has
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the following expansion

	(�1; �2) =
X
s;t2Z

cstZ
s
1
Z�t
2
: (2.22)

Here cs;t are c-numbers and

Z1 = ei�1=(n+m�)V b; Z2 = ei�2=nU�b;

where b is an integer, such that one can �nd another integer a satisfying an�bm =

1. For n and m relatively prime one can always �nd integer solutions to this

equation. Again, let me emphasize that the Zi's commute with the Ui's. They are

generators of the algebra of functions on a new quantum torus

Z1Z2 = e2�i�
0

Z2Z1;

where �0 is obtained by an SL(2;Z) fractional transformation from �

�0 =
a� + b

m� + n
:

Now we outline how to obtain this result. First note that

	(�1 + 2�n; �2) = 
n
1
	(�1; �2) 


�n
1

= 	(�1 � 2��m; �2):

In the last equality we used the fact that Un = 1, and the exponential formula to

shift �1. Using both boundary conditions one has

	(�1 + 2�(n+m�); �2) = 	(�1; �2);

	(�1; �2 + 2�n) = 	(�1; �2):
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Next, expand the section as

	(�1; �2) =
X
s;t2Z

eis�1=(n+m�)e�it�2=n	s;t;

where 	s;t is a n� n matrix and can be expanded as

	s;t =
n+i0X
i=i0

n+j0X
j=j0

cs;t;i;jV
0iU 0j: (2.23)

Here i0; j0 are two arbitrary integers, allowing us to freely shift the summation

limits assuming that cs;t;i+n;j = cs;t;i;j+n = cs;t;i;j. Then one can obtain further

restrictions on the cs;t;i;j coeÆcients using the boundary conditions (2.16). For ex-

ample using the �rst equation (2.16) and comparing like coeÆcients in the Fourier

expansion one has

cs;t;i;je
2�is=(n+m�) = cs;t;i;je

�2�imi=ne�2�ism�=[n(n+�)]:

From this and the similar relation obtained by imposing the second equation (2.16)

one sees that cs;t;i;j vanish unless (s+mi)=n = k and (t+ j)=n = s for k and s two

integers. These equations have multiple solutions. However, if (i; j) and (i0; j 0) are

two solutions then i � i0 2 nZ and j � j 0 2 nZ. This ensures that only one term

survives in the sum (2.23) over i and j. Choosing for later convenience i0 = sb

and j0 = mbt one has

	(�1; �2) =
X
s;t2Z

eis�1=(n+m�)e�it�2=n
n+sbX
i=sb

n+mbtX
j=mbt

cs;t;i;j V
0iU 0j :

Since n and m are relatively prime let a; b 2 Z such that an� bm = 1. Then

k = as; l = at; i = bs; j = mbt
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is an integer solution inside the i and j summation range. Dropping the i; j indices

since they are determined by s and t one has

	(�1; �2) =
X
s;t2Z

cs;t
�
ei�1=(n+m�)V 0b

�s �
ei�2=nU 0�mb

��t
;

which is just (2.22) after an additional phase rede�nition of cs;t to accommodate

the phase di�erence between U and U 0m.

2.3 Twisted Quantum Bundles on Tori

In this section we construct quantum U(n) bundles on d-dimensional noncom-

mutative tori which admit constant curvature connections with vanishing su(n)

curvature. This is done by �nding explicit transition functions compatible with

such a connection. We employ a method which is a straightforward generalization

of [36, 40]. Using a gauge transformation the constant curvature connection can

be brought into the form

ri = @i + iF ij�j; (2.24)

where F is an antisymmetric matrix. This di�ers from the gauge used in the

previous section, but is very convenient for the higher dimensional cases. From

now on this gauge will be used throughout the thesis unless otherwise stated.

De�ne the constant curvature to be

F jk
(0)

= i [rj;rk];

Then, using the commutation relations (2.11) one can calculate

F(0) = (2F + 2�F�F ):
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In general, such a connection can only exist on a non-trivial bundle. One can

introduce transition functions 
i such that the connection satis�es the twisted

boundary conditions

ri(�m + 2�Æjm) = 
j(�m)ri(�m)

�1
j (�m): (2.25)

One can try to �nd solutions for the transition functions of the form


j = eiP
jl�lWj; (2.26)

where P is an arbitrary constant d-dimensional matrix and the Wi's are constant,

unitary n-dimensional matrices. The boundary conditions (2.25) imply the fol-

lowing equivalent relations

P = (1 + 2�F�)�12�F = 2�F (1 + �2�F )�1;

2�F = P (1� �P )�1 = (1� P�)�1P:

Note that P must be antisymmetric because of our gauge choice. Consistency of

the transition functions of the bundle is the cocycle condition


j(�m + 2�Æim)
i(�m) = 
i(�m + 2�Æjm)
j(�m):

In our case it implies

WiWj = e�2�iM
ij=nWjWi; (2.27)

where the antisymmetric matrix M is given by

M = n(2P � P�P ):
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By taking the determinant of both sides of (2.27) one �nds that M must have

integer entries. In the classical case M ij corresponds to the value of the �rst

Chern class on the (ij) two-cycle of the torus. In the auxiliary Type IIA string

theory, M is interpreted as D2 brane winding. This interpretation remains true

in the quantum case.

Let q be the greatest common divisor of n and the nonvanishing entries of M

q = gcd(n;M ij):

Next one de�nes ~n and fM which have relatively prime entries

n = q~n; M = qfM:

It is convenient to consider Wi's which have block diagonal form with q identical

blocks along the diagonal

Wi =

0BBBB@
fWi

. . . fWi

1CCCCA :

Here fWi are ~n-dimensional matrices. Alternatively one can write this in tensor

product notation

Wi = Iq 
 fWi:

The transition functions are also block diagonal and can be written


i = Iq 
 !i: (2.28)

To �nd explicit boundary conditions, following 't Hooft [69], one makes the ansatz

fWi = UaiV bi; (2.29)
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where ai and bi are integers and U and V are the clock and shift matrices [68, 69]

Ukl = e2�i(k�1)=~nÆk;l; Vkl = Æk+1;l; k; l = 1; : : : ; ~n;

and the subscripts are identi�ed with period ~n. They satisfy

UV = e�2�i=~nV U:

Then (2.27) leads to the following relation

fM ij = (aibj � biaj) mod(~n): (2.30)

For two or three dimensional tori, one can �nd integers ai and bi such that (2.30)

holds for arbitraryM , as will be shown in Section 2.5. In higher dimensional cases

the ansatz is not suÆciently general to describe arbitrary bundles. In particular,

one can always perform a change of lattice basis such that the only nonvanishing

components of M are Md�1;d = �Md;d�1, while in general, an arbitrary antisym-

metric matrix can not be brought into such a form. Furthermore, for d > 3, even

in the commutative case, generic bundles do not admit connections with vanish-

ing su(n) constant curvature. A more general construction could be obtained by

allowing for an arbitrary constant curvature connection.

2.4 Adjoint Sections on Twisted Bundles

In this section we analyze the structure of adjoint sections on twisted bundles.

The scalar and fermion �elds are examples of such sections. We also write the
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connection as a sum of a constant curvature connection ri, and a 
uctuating part

Ai

Di = ri � iAi:

Note that Ai is also an adjoint section. Since it is the di�erence between two

connections it transforms covariantly under gauge transformations. It should not

be confused with a gauge potential. Adjoint sections are n-dimensional matrices

with entries which are elements of the quantum plane algebra (2.11) and obey the

twisted boundary conditions

	(�i + 2�Æji ) = 
j	(�i)

�1
j : (2.31)

Next we try to �nd the general solution of (2.31) and write it in unconstrained

form, re
ecting the global properties of the bundle. First consider the simpler

example of a U(n) NCSYM on a trivial bundle over a two-torus. Since 
i = 1

one has

	 =
nX

a;b=1

Eab 
 [
X

i1i22Z

	ab
i1i2
U i1
1
U i2
2
];

where Eab are n-dimensional matrices with one nonzero entry, (Eab)ij = Æai Æ
b
j , and

	ab
i1i2

are c-numbers. In other words, each matrix element of the adjoint section

is an arbitrary function on the quantum torus. For a twisted U(n) bundle with

magnetic 
ux m, such that n and m are relatively prime, one can show [27, 36, 40]

that the adjoint sections have the expansion

	 =
X

i1i22Z

	i1i2Z
i1
1
Zi2
2
;
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where now the coeÆcients 	i1i2 are c-numbers, and Zi are n-dimensional matrices

with noncommutative entries satisfying

Z1Z2 = e2�i�
0

Z2Z1:

Thus the Zi's satisfy the commutation relations of a generators of the quantum

torus. This shows that the set of sections is isomorphic to the set of functions on

a dual torus, and is very similar to the set of adjoint sections of a U(1) NCSYM

theory. For two and three dimensional adjoint bundles with arbitrary magnetic


uxes, we will show that the general solution takes the form

	 =
qX

ab=1

Eab 
 [
X

i1i2:::id2Z

	ab
i1i2:::id

Zi1
1
Zi2
2
: : : Zid

d ]; d = 2; 3: (2.32)

Here Eab are q dimensional.

Begin by writing 	 in tensor notation

	(�i) =
qX

a;b=1

Eab 
 	ab(�i);

where 	ab(�i) are ~n-dimensional matrices with noncommutative entries. Imposing

the boundary conditions (2.31) and using (2.28) one obtains

	ab(�i + 2�Æji ) = !j 	
ab(�i)!

�1
j : (2.33)

A less restrictive but very convenient constraint is obtained by shifting �i by 2�~n

using (2.33)

	ab(�i + 2�~nÆji ) = !~n
j	

ab(�i)!
�~n
j : (2.34)

In (2.34) all the matrix factors disappear since U ~n = V ~n = 1. The �i depen-

dent exponential of (2.26) survives and acts like a translation operator due to the
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commutation relations (2.11). This implies the following periodicity relation

	ab(�i + 2�~n(Q�1)
j
i) = 	ab(�i); (2.35)

where

Q�1 = 1� P�:

Next we try to �nd solutions of the form

Zi = ei�jQ
j

k
Nk

i
=~n U siV ti ; i = 1: : :d: (2.36)

Here sj and tj are integers and the exponent was chosen so that it is compatible

with the constraint (2.35) if the matrix N has integer entries. One can show that

Zi is compatible with the boundary conditions (2.33) if

N i
j = (bisj � aitj) mod(~n); (2.37)

where ai and bi are de�ned by (2.30). In the next two sections we will consider

in detail the two and three dimensional cases, and �nd ai, bi, sj and tj such

that (2.30) and (2.37) hold. Furthermore, for properly chosen integers ai, bi, sj

and tj, one can show that an arbitrary adjoint section can be expanded in terms

of the Zi's as in (2.32). For a proof of this statement in two dimensions see [40].

It is convenient to de�ne another matrix which will be used shortly,

Lij = (sitj � tisj) mod(~n): (2.38)

In the remainder of this section we calculate the commutation relations satis�ed

by the Zi's and the constant curvature connection (2.24). Using their explicit
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form (2.36) one �nds, after some matrix algebra,

ZiZj = e2�i�
0
ij ZjZi (2.39)

where

�0 = ~n�2NTQT�QN � ~n�1L: (2.40)

From (2.39) one can see that the algebra generated by the Zi's is the algebra of

functions on the quantum torus with deformation parameters given by �0. After

some further matrix algebra and using the following identities,

Q = 1 + 2�F�;

Q2 = 1 + 2�F(0)� = (1� fM�=~n)�1;

QT� = �Q ;

one can rewrite �0 as a fractional transformation

�0 = �(�)
def
= (A�+ B)(C� +D)�1: (2.41)

Here

� =

0B@ A B
C D

1CA ; (2.42)

and the d-dimensional block matrices are given by

A = ~n�1(NT + LN�1fM); B = �LN�1; C = �N�1fM; D = ~nN�1: (2.43)

One can check that

ATD + CTB = 1; ATC + CTA = 0; BTD +DTB = 0; (2.44)
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and thus � is an element of O(d; d jR), i.e. it satis�es

�TJ� = J;

where

J =

0B@ 0 Id

Id 0

1CA : (2.45)

In the two and three dimensional examples that will be discussed later, � is in fact

an element of SO(d; d jZ). This is the subgroup with determinant one and integer

valued entries in the basis where the metric is given by (2.45). The Weyl spinor

representations of SO(d; d jZ) are also integral, that is the representation matrices

have integer entries. This statement, which is implicit in papers discussing T-

duality of Type II string theory, will be proven in the Appendix A. Since the spinor

representation of SO(d; d jZ) will be used extensively in the following sections,

recall that the vector and spinor representations are related by

S�1
s S = � p
s 
p; (2.46)

and the gamma matrices satisfy

f
s; 
pg = 2Jsp: (2.47)

Finally, one can show by direct calculation that the commutation relations of

the constant curvature connection and Zi have the form

[ri; Zj] = iH i
jZj; (2.48)
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where there is no sum over j and H = (~n � fM�)�1N . Note that H can also be

written in terms of � and some of the block components of �

H�1 = C�+D: (2.49)

Finally, the following identities will be useful in later sections

H = ~n�1Q2N;

detH = (q det(Q)=n)
2
; (2.50)

det(Q2) = (1� tr(fM�)

2~n
)�2:

M = 2�nQ�1F(0)Q
�T ;

M ij"ijl = M ij"ijkQ
k
l :

Note that with the exception of the last relation all the others are valid for tori of

arbitrary dimension provided one works on the bundles discussed in Section 2.3.

2.5 Two and Three Dimensional Solutions

Although the twisted two dimensional case has been discussed extensively in

the literature [27, 35, 36, 40], we will review it here in a form that readily admits

generalization to higher dimensional compacti�cations. I will then give a complete

description of the three dimensional adjoint bundles.

In the two dimensional case the antisymmetric matrices � and M have the

form

� =

0B@ 0 �

�� 0

1CA ; M =

0B@ 0 m

�m 0

1CA
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where � is the deformation parameter and m is the magnetic 
ux, which is inter-

preted as the number of D2 branes wrapping the two-torus.

One can verify that the integers

(ai) = ( ~m; 0); (bi) = (0; 1);

where n = q~n andm = q ~m, satisfy (2.30). Then choosing si = (0; 1) and ti = (b; 0),

where b is an integer such that a~n � b ~m = 1, one has N = I2. One can now

use (2.38) and (2.43) to �nd

� =

0B@ aI2 b"

� ~m" ~nI2

1CA ; (2.51)

where " is a two dimensional matrix with the only nonvanishing entries given

by "12 = �"21 = 1. Group elements of the form above are in an SL(2;Z) sub-

group of SO(2; 2 jZ). This subgroup is isomorphic with one of the Weyl spinor

representations of SO(2; 2 jZ). This feature is not generic for higher dimensional

compacti�cations and re
ects the fact that SO(2; 2 jZ) � SL(2;Z)� SL(2;Z), so

that it is not simple.

The algebra of the Zi's is then determined by �0 which is given by the fractional

transformation (2.41). In two dimensions, the SO(2; 2 jZ) fractional transforma-

tion (2.41) can also be written in the more familiar form, used in [27, 36], as a

SL(2;Z) fractional transformation acting on �

�0 =
a� + b

~m� + ~n
: (2.52)

One can also check that the other SL(2;Z) subgroup, made of elements of the
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form 0B@ R 0

0 (RT )�1

1CA ;
acts trivially on �. This subgroup is generalized to SL(d;Z) in compacti�cations

on a d-dimensional torus, and will play in important role later, but only for the

two dimensional compacti�cation it leaves � invariant. The Zi's then obey the

following algebra

Z1Z2 = e2�i�
0

Z2Z1:

As will be shown shortly, the rank of the gauge group and the magnetic 
ux

transform in an integral Weyl spinor representation of SO(2; 2 jZ). Using the

creation and annihilation operators introduced in the Appendix A one can write

such a spinor as

nj0i+ma
y
1a
y
2j0i: (2.53)

Using (2.46) one can show that the spinor representation of (2.51) transforms the

above state into qj0i. In the Weyl basis one can write the action as0B@ q

0

1CA = S

0B@ n

m

1CA ; (2.54)

where

S =

0B@ a �b
� ~m ~n

1CA :
In Section 3.1 we will show, employing the expansion of the adjoint section in terms

of the Zi generators (2.32), how to rewrite the original U(n) NCSYM action on a

twisted bundle as a U(q) NCSYM action on a trivial quantum bundle over a torus
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with deformation parameter �0. The SL(2;Z) transformation, which relates the

deformation parameters and the spinors (2.53) of these two NCSYM, can then be

interpreted as a duality transformation inherited from T-duality of Type II string

theory. This can be seen as follows. The rank and the bundle of the NCSYM

theory determine the D brane charges in string theory. These charges transform

in a chiral spinor representation of the target space duality group [13]. Given n and

m with greatest common divisor q, one can perform a T-duality transformation

which takes the original D brane con�guration into q D0 branes.

Of course the metric and antisymmetric tensor also transform under this dual-

ity, and in the proper limit, which we will explain in detail later, the antisymmetric

tensor B transforms separately by fractional transformation just as in (2.41). Since

the parameters �ij of the NCSYM theory are identi�ed with Bij, the background

expectation value of the NS antisymmetric tensor of the compacti�ed auxiliary

string theory, the expected transformation under target space dualities is (2.41).

Next we turn to the three dimensional case which will be solved by �rst per-

forming an SL(3;Z) transformation R to bring M in canonical form3

M = RM0RT ; (2.55)

where

M0 =

0BBBB@
0 0 0

0 0 m

0 �m 0

1CCCCA : (2.56)

3It is always possible to bring an antisymmetric matrix in canonical form using SL(3;R) but

here one has to do this using an integral matrix.
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While it is always possible to �nd such a transformation, (2.55) does not de�ne

it uniquely. We �rst �nd the solution corresponding to M0, and then obtain the

general solution by using such an R.

First note that M0 corresponds to a background magnetic �eld with 
ux only

through the (23) plane, which suggests that the solution should closely resemble

the two dimensional one. As before,

(ai
0
) = (0; ~m; 0); (bi

0
) = (0; 0; 1)

satisfy (2.30). Similarly if one sets

(s0i ) = (0; 0; 1); (t0i ) = (0; b; 0); (2.57)

one can satisfy (2.37) with the N0 matrix given by

N0 =

0BBBB@
~n 0 0

0 1 0

0 0 1

1CCCCA :

The diagonal entries of N0 divided by ~n have the interpretation of wave numbers.

Thus one can see that twisting the boundary conditions allows for fractional wave

numbers in the second and third directions. Using (2.57) one �nds

L0 =

0BBBB@
0 0 0

0 0 �b
0 b 0

1CCCCA :
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One can now use (2.43) to �nd the SO(3; 3 jZ) matrix

�0 =

0BBBBBBBBBBBBBB@

1 0 0 0 0 0

0 a 0 0 0 b

0 0 a 0 �b 0

0 0 0 1 0 0

0 0 � ~m 0 ~n 0

0 ~m 0 0 0 ~n

1CCCCCCCCCCCCCCA
: (2.58)

Everything so far is just as in the two dimensional case. Note however that in

general � will not be in canonical form, that is, it will not have a form similar

to (2.56).

Now, write the general solution for an arbitrary M as

ai = Ri
j a

j
0; bi = Ri

j b
j
0;

si = s0j ; ti = t0j ;

N = RN0;

� = �0

0B@ RT 0

0 R�1

1CA : (2.59)

Just as in the two dimensional case one �nds, using (2.46), the Weyl spinor rep-

resentation matrices corresponding to (2.58) and (2.59)

S0 =

0BBBBBBB@

a �b 0 0

� ~m ~n 0 0

0 0 1 0

0 0 0 1

1CCCCCCCA ;

S = S0

0B@ 1 0

0 RT

1CA :

46



The rank of the group and the magnetic 
ux matrixM de�ne a state in the Weyl

spinor Fock space

nj0i+ 1

2
M ija

y
ia
y
jj0i:

Now one can check that S acts on this spinor as0BBBBBBB@

q

0

0

0

1CCCCCCCA = S

0BBBBBBB@

n

M23

M31

M12

1CCCCCCCA : (2.60)

It will be convenient to denote the components of the spinor as

� =

0BBBBBBB@

n

M23

M31

M12

1CCCCCCCA :

As will be shown later (2.60) can be used to relate the original theory to a U(q)

theory on a trivial bundle. In Appendix A we show that the Weyl spinor rep-

resentation of SO(3; 3 jZ) is in fact isomorphic to SL(4;Z). In this case, in the

auxiliary Type IIA string theory, the D0 and D2 branes form q bound states, and

the transformation above corresponds to a T-duality transformation that maps

the original D brane con�guration into a q D0 branes.

2.6 Noncommutative Super Yang-Mills Action

After discussing how to perform integration on a noncommutative torus we will

be ready to write the noncommutative Super Yang-Mills action. In the classical

case the integral is a linear map that associates to a function its zero mode Fourier
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coeÆcient. Similarly for an element of A� of the form a =
P
ai1i2:::idU

i1
1 U

i2
2 : : : U id

d

de�ne the integral as Z
dd� a

def
= (2�)d a00:::0: (2.61)

One can check that this de�nition has all the desirable properties of the classical

integral, such as linearity and translation invariance in �i. For de�niteness, in the

remainder of this section we discuss the three dimensional case.

When twisted U(n) theories are considered, it was found in [27, 36] that the

integral must be normalized in a particular way to �nd a duality invariant spec-

trum. The normalization can also be obtained directly as the Jacobian of a change

of integration variables. Note that the integrand, which is the trace of an adjoint

section, obeys the following periodicity

tr	(�i) = tr	(�i + 2�(Q�1)
j
i):

Since tr	(�i) does not have periodicity 2� in �i it can not be expanded in terms of

the Ui variables. One can de�ne new variables b�i = �jQ
j
kR

k
i and

bUi = eb�i , where
R is an arbitrary SL(3;Z) transformation. In the following sections we take R to

be the matrix that brings M into canonical form (2.55). Then

Z
d3� tr	(�) =

Z
d3b� j det(Q�1)j tr	(b�Q�1); (2.62)

where det(Q�1) is the Jacobian of the coordinate transformation, and the second

integral can now be performed as discussed above, since the integrand has an

expansion in terms of the bUi variables. Using the expansion (2.32) of 	 one
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obtains Z
d3� tr	(�) = (2�)3 ~n j det(Q�1)j

qX
a=1

	aa
000
:

The Super Yang-Mills action on a noncommutative three-torus is given by

SU(n) = 1

g2SYM

Z
dt

Z
d3�

q
det(Gij) tr

�
1

2
GijF0iF0j�

1

4
GijGkl(F ik �F ik

(0)
)(F jl � F jl

(0)
)+ (2.63)

1

2

X
a

_Xa _Xa � 1

2

X
a

Gij[D
i; Xa][Dj; Xa]+

1

4

X
a;b

[Xa; Xb][Xa; Xb] + fermions

1A ;
where F ij = i [Di; Dj] and F ij

0 = i [ri;rj]. We have subtracted the constant part

of the �eld strength in the second line of equation (2.63). This is equivalent to

adding a constant to the Lagrangian, or equivalently to the Hamiltonian, and has

the e�ect of setting the vacuum energy to zero. The noncommutative pure gauge

theory action was written �rst in [49] and the maximally supersymmetric U(n)

NCSYM gauge theory action was written in [27, 38].

For the compacti�cation of the auxiliary Type IIA string theory without

wrapped D2 branes, the above action can be obtained directly from the Matrix

action. One has to show that the trace over in�nite dimensional matrices reduces

to a �nite dimensional trace and an integral. A formal argument for the commu-

tative case was given in [25] and discussed in detail in [70]. The same argument

extends to the noncommutative case. A brief argument was given in [27] showing

how to extend this construction when there are D2 branes wrapped on the torus
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in the auxiliary Type IIA string theory, corresponding to magnetic 
uxes in the

NCSYM gauge theory. Here we just make the assumption that the NCSYM action

is independent of the D2 brane charges and that adding D2 branes only results

in changing the quantum adjoint bundle. We will provide evidence for this in

Section 3.2.
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Chapter 3

Dualities of the Matrix Model from T-Duality of

the Type II String

In Section 3.1, we will start with the U(n) NCSYM action (2.63) on a twisted

quantum bundle with magnetic 
uxes M and deformation parameter �, and show

that after a sequence of �eld rede�nitions it can be rewritten as a U(q) NCSYM

action on a trivial bundle over a quantum torus with deformation parameter �0.

Then, in Section 3.2, we will take the small �0 and small compacti�cation

volume limit in the auxiliary Type IIA string theory and obtain the transforma-

tion properties of the metric, antisymmetric tensor, and string coupling constant.

These are then compared with the transformation in Section 3.1 using the standard

relations between String theory and SYM gauge theory.

Section 3.3 shows the relationship between the physical language used in these

constructions and the more abstract mathematical language of Connes and Rie�el.

The last section contains some gauge equivalent formulations closely resembling

standard constructions in the commutative case.

3.1 SO(3; 3 jZ) Duality of Super Yang-Mills
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Using the matrix H de�ned in (2.48), one can make the following constant

curvature and �eld rede�nitions

cri def= (H�1)ijrj; bAi def= (H�1)ijA
j;

cDi def= (H�1)ijD
j;

bFkl = [crk; bAl]� [crl; bAk]� i[ bAk; bAl]:

In terms of the new variables, the commutator of the constant curvature connection

and the Zi's takes the simple form,

[cri; Zj] = i ÆijZj;

and the curvature can be expressed as

F ij = F ij
(0)

+H i
kH

j
l
bFkl:

One can now rewrite the action in terms of the hatted variables and perform the

change of coordinates (2.62)

SU(n) = 1

g02SYM

Z
dt

Z
d3b� qdet(G0ij)

1

~n
tr

�
1

2
G0
ij
bF0i bF0j�

1

4
G0
ijG

0
kl
bF ik bF jl+

1

2

X
a

_Xa _Xa � 1

2

X
a

G0
ij[
cDi; Xa][cDj; Xa]+

1

4

X
a;b

[Xa; Xb][Xa; Xb] + fermions

1A :
We have introduced a new gauge coupling and metric given by

g0
2

SYM = ~n j det(Q�1)j g2SYM (3.1)

52



G0ij = (H�1)ik(H
�1)

j
lG

kl (3.2)

and used (2.50) to make these substitutions.

Next we introduce primed variables �0i, U
0
i and partial derivatives @0i satisfying

[�0i; �
0
j] = �2�i�0

ij;

[@0i; �0j] = Æij; [@0i; @0j ] = 0;

U 0
i
def
= ei�

0
i ;

U 0
iU

0
j = e2�i�

0
ijU 0

jU
0
j:

Comparing the algebra satis�ed by Zi and cri on one hand and U 0
i and @

0
i on the

other, one can see that all the commutation relations are the same except that the

cri's do not commute while the @0i's do. The dynamical variables of the theory are

the c -number coeÆcients appearing in the expansion (2.32) of the adjoint sections

in terms of Zi's. Since in the action, the constant curvature covariant derivatives

only appear in commutators with the Zi's and not with each other, substituting

U 0
i and @0i for Zi and

cri leaves the dynamics invariant. A similar construction

was also considered in [38]. The integral and trace of the U(n) theory can be

translated to a U(q) integral using the de�nition of the integral (2.61)

Z
d3b� 1

~n
tr	(Zi) =

Z
d3�0 trq	(U

0
i) = (2�)3

qX
a=1

	aa
000
:

Making these substitutions one obtains the U(q) action

SU(q) = 1

g02SYM

Z
dt

Z
d3�0

q
det(G0ij) trq

�
1

2
G0
ijF 00iF 00j�
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1

4
G0
ijG

0
klF 0ikF 0jl+

1

2

X
a

_Xa _Xa � 1

2

X
a

G0
ij[D

0i; Xa][D0j; Xa]+

1

4

X
a;b

[Xa; Xb][Xa; Xb] + fermions

1A ;
where

D0i def= @0i � iA0i; F 0ij = i [D0i; D0j]

are the U(q) connection and curvature. This shows that the original U(n) theory

is equivalent to a U(q) NCSYM theory with gauge coupling given by (3.1) and

de�ned on a trivial adjoint bundle over a noncommutative torus with deformation

parameter �0 and metric given by (3.2).

In general two NCSYM theories are dual to each other if there exists an element

� of SO(3; 3 jZ) with Weyl spinor representation matrix S, such that their de�ning

parameters are related as follows

�� = (A�+ B)(C�+D)�1; (3.3)0BBBBBBB@

�n

�M23

�M31

�M12

1CCCCCCCA = S

0BBBBBBB@

n

M23

M31

M12

1CCCCCCCA ; (3.4)

�Gij = (C�+D)ik(C� +D)jlGkl; (3.5)

�g2SYM =
q
j det(C�+D)j g2SYM ; (3.6)

where we used (2.49) in the last two equations. While � in (3.3) and the rank and

magnetic 
ux numbers in (3.4) transform separately and the duality group action
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can be seen explicitly, the transformation of the gauge coupling and the metric

also depends on �. Note that C� + D satis�es a group property. If �3 = �2�1

and �0 = �1(�) then

C3�+D3 = (C2�0 +D2)(C1�+D1): (3.7)

For a nonvanishing �n, the sign ambiguity that exists when one tries to associate

to a SO(3; 3 jZ) transformation its spinor representation matrix, can be removed

by requiring that �n is positive. Strictly speaking, one should not consider duality

transformations for which �n vanishes since in this case the description in terms of

gauge theories becomes singular.
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3.2 Target Space Duality

Next we show that the SO(3; 3 jZ) duality discussed in the previous section is

the realization in NCSYM gauge theories of T-duality in the auxiliary Type IIA

string theory. This relation is described by the following diagram.

IIA

n; M ij

gs

Gij

Bij

 ! NCSYM

U(n); M ij

gSYM

Gij

�ij = Bij

l l

IIA

q; M 0ij = 0

g0s

G0
ij

B0
ij

 ! NCSYM

U(q); M 0ij = 0

g0SYM

G0ij

�0
ij = B0

ij

The right side of the diagram shows the equivalence described in Section (3.1).

The horizontal arrows represent the Connes, Douglas and Schwarz conjecture [27].

The left side of the diagram contains the string coupling, D brane charges, and

compacti�cation moduli of the two auxiliary Type IIA string theories correspond-

ing to the NCSYM's on the right. The additional moduli corresponding to

Ramond-Ramond backgrounds are set to zero in this chapter and will be con-

sidered separately in Chapter 4. Note that the NCSYM metric is the inverse of
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the Type IIA metric as indicated by the index position, the deformation parame-

ter equals the NS antisymmetric tensor, and the rank and magnetic 
ux numbers

translate into D0 brane number and D2 brane winding. Finally the SYM and

string coupling are related by (2.5).

For compacti�cation on T 2, the duality transformation (2.54) can be written

as an SL(2;Z) mapping class group transformation conjugated by a T-duality in

the x1 direction1. The sequence of duality transformations is shown in �gure 3.1.

Under T-duality in the x1-direction the two D0-branes are mapped into D1-strings

wrapping the horizontal cycle and the D2-brane into a D1 string wrapping the

oblique cycle. The T-dual torus is not rectangular for a nonvanishing �. In fact the

D1-strings can be in a lower energy state obtained by minimizing their total length.

This corresponds to the fact that the original D0 and D2-branes form a bound

state. Under the SL(2;Z) mapping class group transformation we can arrange the

D1-string along the horizontal axis of the torus. This is just a relabeling of the

de�ning 1-cycle of the torus. Finally after another T-duality in the x1-direction

we arrive at the �nal con�guration which contains a single D0-branes and the �nal

NS-NS modulus given by �0.

In the remainder of this section we calculate the relation between the pa-

rameters of the two auxiliary Type IIA string theories. First we describe how the

metric, antisymmetric tensor and the string coupling transform under an arbitrary

1The T-duality in the x1-direction is an element of O(2; 2 jZ) of negative determinant.
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Figure 3.1: The covering space of T 2 with one D0-brane per cell

T-duality transformation, and then take the limit

�0 ! 0; Gij ! 0; (3.8)

keeping �0�2Gij constant. This is the limit proposed by Seiberg and Sen [18, 17]

and brie
y discussed in the introduction. However, in this limit the auxiliary Type

IIA string metric vanishes. Instead we calculate directly the inverse metric of the

NCSYM theory which, after including factors of �0, is given by �0�2Gij.

Under the T-duality group SO(d; d jZ), the metric and NS antisymmetric ten-

sor2 transform together by fractional transformations [71]

G0 +B0 = (A(G+B) + B)(C(G +B) +D)�1: (3.9)

Using the identi�cation between � and B one obtains H�1 = CB + D. Then,

2Hopefully, there is no confusion between B, denoting the NS tensor, and B, which is the

upper right block of �.
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after some matrix algebra, one can write the symmetric and antisymmetric part

of (3.9) as

G0 = HTG(1� (HCG)2)�1H; (3.10)

B0 = (AB + B)(CB +D)�1 �HTGHCG(1� (HCG)2)�1H: (3.11)

One derives this using the fact that HC is antisymmetric. This can be shown using

(CB +D)�1 = (A� (AB + B)(CB +D)�1C)T ;

which follows from (2.44). Note that (3.10) and (3.11) have simple expansions in

G. For an elementary T-duality in the x1 direction the string coupling constant

transforms as

g0S = gSG
�1=2
11 : (3.12)

Taking the limit (3.8) in (3.11) one can see that the antisymmetric tensor itself

transforms by fractional transformation3

B0 = (AB + B)(CB +D)�1: (3.13)

To �nd the duality transformation of the metric, we reinstate factors of �0

in (3.10) since the SO(3; 3 jZ) transformations are de�ned to act on dimensionless

�elds. Now, take the limit (3.8) and to �rst order in the dimensionless metric

�0�1Gij one has

�0�2G0 = (CB +D)�T (�0�2G)(CB +D)�1: (3.14)

3This is consistent with the fact that the action by fractional transformations preserves the

antisymmetry of the matrices.
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Making the identi�cation B = �, one recognizes above the H matrix de�ned

in (2.49).

Finally, using (3.12), one can also calculate how the string coupling transforms

under duality. It was shown in [34] that the SO(d; d jZ) group is generated by a

set of simple elements. These are written explicitly in the Appendix A. For each

of these generators, one can check using (3.12) that the string coupling transforms

as

g0S = gS j det(CB +D)j�1=2: (3.15)

In fact (3.15) is true for an arbitrary transformation because CB +D satis�es the

group property (3.7).

Comparing the T-duality relations (3.13), (3.14) and (3.15) with the NCSYM

duality relations (3.3), (3.5) and (3.6), using (2.5) to relate the string and gauge

couplings, one sees that indeed the two dualities coincide.

3.3 Projective Modules and Morita Equivalence

A quantum vector bundle is a projective A-module E . First, consider the

classical commutative picture. The set E of global sections of a vector bundle over

a base space X has the structure of a projective module over the algebra C(X).

Having a module essentially means that one can add sections and can multiply

them by functions. Not all modules over a commutative algebra are vector bundles.

For example, the set of sections on a space consisting of a collection of �bers of
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di�erent dimensions over a base space also form a module. However, projective

modules over the algebra of functions on a topological space are in one to one

correspondence with vector bundles over that space. By de�nition, a projective

module is a direct summand in a free module. A free module E0 over an algebra A

is a module isomorphic to a direct sum of a �nite number of copies of the algebra

E0 = A� : : :�A:

Trivial bundles correspond to free modules since the description of their sections

in terms of components is global, and each component is an element of C(X).

For every vector bundle, one can �nd another one such that their direct sum is

a trivial bundle. In dual language this implies that the module of sections E is

projective

E0 = E � E 0:

Again it is nontrivial to show the converse, that every projective module is iso-

morphic to the set of sections of some vector bundle. Finally, projective modules

over noncommutative algebras are the quantum version of vector bundles.

In the noncommutative case, one distinguishes between left and right projective

modules. Multiplying fundamental sections from the right with elements of A�

preserves the boundary conditions (2.15), while multiplication on the left gives

something that is no longer a global section. Thus the set of sections of the

fundamental bundle form a right projective module over the A� algebra which I

will denote F�

� . This is no longer true for the adjoint sections, since in (2.16) the
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transition functions multiply from both the left and right. However, one can check

that the adjoint sections are both left and right projective modules over the A(��)

algebra. Also a fundamental section is a left projective modules over the A(��)

algebra. This is because the exponents of the Ui's satisfy

[i�i � 2��ij@
j ; �k] = 0; (3.16)

thus the Ui's can be commuted over the transition functions in (2.15) and (2.16).

Additionally, the fact that F�

n;m is both a leftA(��)-module and a rightA�-module

can be understood as follows. Since [Ui; �j] = 0 one also has

Ui�(�i) = �(�i)Ui;

where we dropped the derivatives when there was nothing to their right. Let a be

an element of A(��)

a =
X

i1:::id2Z

ai1:::idU i11 : : :U idd :

Thus multiplying on the left with a is equivalent to multiplying on the right with

ea
a� = �ea; (3.17)

where ea =
P

i1:::id2Z ai1:::idU
id
d : : : U i1

1 is the same function as a but with Ui's as

arguments and with all the factors written in reversed order.

In the remainder of this chapter, we only consider the two dimensional case

and use the gauge (2.14). The construction in Chapter 2 is equivalent to the

projective modules discussed in [27]. By solving the boundary conditions one goes
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from a local to a global description. Here we present explicit formulae for this

equivalence. First one has to express the left actions on the fundamental sections

as actions on the Hilbert space [36]. For example the action of the Zi generators

is given by

(Z1
b�)j(x) = b�j�a(x� 1

m
); (Z2

b�)j(x) = e�2�ij=me2�ix=(n+m�) b�j(x):
This can be written as

Z1 =W a
1
V1; Z2 =W2V2;

where Vi and Wi are operators acting on the Hilbert space as

(V1
b�)j(x) = b�j(x� 1

m
); (V2

b�)j(x) = e2�ix=(n+m�) b�j(x);
(W1

b�)j(x) = b�j�1(x); (W2
b�)j(x) = e�2�ij=m b�j(x):

These operators satisfy the following relations

V1V2 = e�2�i=[m(n+m�)]V2V1; W1W2 = e2�i=mW2W1; [Vi;Wj] = 0

and can be used to express other operators acting in the Hilbert space. For example

U1 =W1V
n+m�
1 and U2 = W n

2
V n+m�
2 .

Now we present the correspondence between [27] and the approach followed

here4. The two integers p and q and the angular variable �CDS labeling the pro-

jective module H�CDS
p;q of [27], and �0

CDS
can be expressed in terms of the quantities

used here

p = n; q = �m; �CDS = �12; �0
CDS

= �0
12
:

4We follow here the same notation as in [36, 40] except for an overall minus sign in the

de�nition of �.
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Then F�

n;m
�= H�12

n;�m. The Hilbert space representation of [27] written in terms

of the function f(s; k) with s 2 R and k 2 Zq is linearly related to the b�k(x)
representation

b�k(x) = mX
l=1

Kkl (S(� m
n+m�

)f)(x; l):

Here K is an m �m representation changing matrix de�ned as in (2.20) but for

m-dimensional 't Hooft matrices, and S� is the rescaling operator (S�f)(x; k) =

f(�x; k) which can be expressed using the ordered exponential

S� = �E((�� 1)x; @x):

Also, using lower case to distinguish them from our current notation which follows

[36], the operators in [27] represented in the �̂k(x) basis are given by

v0 = V n+m�
2

; v1 = V n+m�
1

; w0 = e2�in=mW n
2
; w1 = e2�i=mW1

z0 = e2�i=mZ2; z1 = e�2�ia=mZ�1
1
; u0 = e2�in=mU2; u1 = e2�i=mU1:

Next we introduce the Morita equivalence of two algebras [42, 43, 34, 38],

which can be used to describe a subgroup of the T-duality group of the M-theory

compacti�cation in the language of noncommutative SYM gauge theory.

Two C�-algebras A and A0 are Morita equivalent if there exists a right A-

module E such that the algebra EndAE is isomorphic to A0. Here EndAE denotes

the set of endomorphisms of the A-module E . It consists of linear maps T on E

where linearity is not only with respect to c-numbers but also with respect to right

multiplication by elements of A

T (�f) = T (�)f; � 2 E ; f 2 A:
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An example of Morita equivalent algebras is A� and A�0. As discussed above,

the projective module associated to the quantum fundamental bundle F�

n;m is a

right A�-module. One can prove that EndA�F�

n;m is isomorphic to A�0. Here we

just show that the two algebras have the same generators. Using (3.17) one has

T (�ea) = T (a�) and T (�)ea = aT (�) and since T is an endomorphism one obtains

T (a�) = aT (�), which can also be written as [T; a] = 0. But the Zi's were found

exactly by requiring that they commute with Ui's so T 2 A�0.

The physical interpretation of Morita equivalence is that a U(n) SYM gauge

theory on the twisted bundle with magnetic 
ux m is equivalent to a U(1) gauge

theory on a dual quantum torus A�0. This can be seen as a consequence of the

discussion following equation (2.13). The gauge �eld components Ai, the scalar

�elds Xa, and the components of � are not matrix valued, rather they are one-

dimensional. The �nal result is a matrix because the Zi's are matrices. On the

other hand, one can ignore the internal structure of the Zi's and just regard them

as the generators of A�0, thus allowing us to reinterpret the original theory as a

noncommutative U(1) gauge theory on the quantum torus A�0.

Since � is a continuous variable, one can interpolate continuously, through non-

commutative SYM theories, between two commutative SYM theories with gauge

groups of di�erent rank and appropriate magnetic 
uxes. This SL(2;Z) duality

subgroup has a nice geometric interpretation in the T-dual picture of [28] where

it corresponds to a change of basis of the dual torus lattice [32].
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3.4 Gauge Transformations

In this section, we consider a gauge equivalent formulation of the previous

results closely following the treatment of Taylor in [70] of the corresponding com-

mutative case. In that paper a gauge transformation was considered so as to

change the standard 't Hooft transition function into trivial transition function

in the X2 direction. When the transition functions are trivial T-duality has the

standard form, i.e. the gauge �eld translates directly into the position of a D-

string on the dual torus. A similar gauge transformation can be performed in the

noncommutative case.

First let us consider a general gauge transformation g(�1; �2). Just as in the

classical case the covariant derivatives transform as D0
i = g�1Dig resulting in the

following transformation for the gauge �elds

A0i = g�1Aig + ig�1@ig: (3.18)

As a result the new transition functions are given by


0
1
(�1; �2) = g�1(�1 + 2�; �2)
1(�1; �2)g(�1; �2); (3.19)


0
2
(�1; �2) = g�1(�1; �2 + 2�)
2(�1; �2)g(�1; �2):

Again all this is just as in the classical case except that one has to take into account

the noncommutativity of the �i's.

It will be useful to consider �rst the � = 0 commutative case. Then one knows
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both the original gauge �elds (2.14) and the transformed ones

A01 = 0; A02 =
m

n

�1

2�
+Q;

where Q = 1

n
diag(0; 1; : : : ; n � 1), and I use primes for all variables in the new

gauge. Than the di�erential equation for the gauge transformation is

@1g = 0; i@2g = gA02 � A2g = gQ

which can be integrated to give

g = Ke�i�2Q; (3.20)

where the integration constant K is the n � n matrix (2.20). It was �xed by

requiring a trivial 
0
2
as given by (3.19). Using the gauge transformation (3.20)

one can can now calculate both transition functions


0
1
= e2�im=nei�2TmV m; 
0

2
= 1 (3.21)

where Tk = diag(0; : : : ; 0; 1; : : : ; 1); k = 1; : : : ; n with the �rst n � k entries van-

ishing and the last k equal to unity.

Next we discuss the noncommutative case. The �rst thing to notice is that the

original quantum transition functions (2.18) are � independent and only contain

the �2 variable. Similarly the classical gauge transformation (3.20) only depends

on �2 so that the classical computation of the new transition functions is also valid

in the quantum case. Using (3.18) the new gauge �elds are given by

A01 = 0; A02 =
m

n+m�

�1

2�
+

n

n +m�
Q:
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Since (3.16) implies [Ui; g] = 0 one can see that the gauge transformation is

compatible with the quotient conditions (2.2). One can use the gauge transforma-

tion to obtain the generators of the sections of the adjoint bundle

Z 0
1
= ei�1=(n+m�)e�2�in�

0Q; Z 0
2
= e2�i=nV ei�2(1�Tn�1):

The explicit formulae for the fundamental sections in the new gauge is

�0k(�1; �2) =
X
r2Z

ei�2r�k�nr

 
�1

2�
+
k � nr
m

!
:

The �s functions are de�ned over the real axis and must satisfy

�s+m(x) = e�2�im=n�s(x);

so that only m of them are independent. Again, note that since the transition

functions only contain �2 and all were ordered to the left of �1 in the solution for

the sections of the fundamental bundle, they have the same form in the noncom-

mutative and in the classical case.
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Chapter 4

Adding Ramond-Ramond Backgrounds

For d � 2, in addition to the compacti�cation metric there are moduli which,

in terms of the auxiliary Type IIA string theory [17, 18], correspond to the 2-

form of the NS-NS (Neveu Schwarz-Neveu Schwarz) sector and the R-R (Ramond-

Ramond) forms. Next we will extend the result of Chapter 2 by allowing arbitrary

R-R backgrounds.

In Section 4.1, we review the transformation properties of the R-R moduli

under the duality group [72, 73, 74]. The dimensionally reduced action of Type

IIA supergravity is invariant under the T-duality group1 SO(d; d). By deriving

the nonlinear sigma model which describes the scalar �elds of the supergravity,

one can extract the transformation properties of the R-R backgrounds under the

duality group. In particular, we will show that appropriately de�ned �elds, which

are combinations of the R-R forms and the NS-NS two-form, transform in a spinor

representation of the duality group.

In Section 4.2, we will identify the Chern-Simon parameters of the gauge the-

ory with the R-R moduli and then show that the duality transformations relating

di�erent NCSYM theories can be extended to include these terms. In the pro-

1The equations of motion are invariant under the full U-duality group Ed+1(d+1).
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cess, we will also obtain the transformation properties of the parameters and show

that they coincide with the transformations expected from string theory and de-

rived in Section 4.1 using the dimensional reduction of 10-dimensional Type IIA

supergravity.

Finally, in Appendix B we present some results, used in the main text, re-

garding transformation properties under the T-duality group in the limit of small

compacti�cation volume and decoupling of string excitations.

A similar proposal for the additional terms in the noncommutative action was

made in [50].

4.1 Duality of Seven Dimensional Supergravity

Type IIA superstring theory compacti�ed on a d-dimensional torus is invari-

ant under the T-duality group SO(d; d jZ). The low energy supergravity e�ective

action describing this compacti�cation is in fact invariant under the continuous

group SO(d; d). This action can be obtained directly from the 10-dimensional

Type IIA supergravity by dimensional reduction. In this section we derive the

transformation properties of the R-R moduli under the discrete duality group.

Since this is a subgroup of the corresponding continuous group which is a sym-

metry of the low energy 10-dimensional supergravity action, one can obtain these

transformation properties by analyzing the symmetries of the the nonlinear sigma

model which describes the dynamics of the scalars in the supergravity action.

The NS-NS scalars are described locally by an O(d; d) =O(d)�O(d) nonlinear
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sigma model. Taking into account the T-duality group, the NS-NS nonlinear sigma

model is in fact de�ned on

O(d; d jZ) nO(d; d) =O(d)� O(d):

On the other hand simple counting arguments suggest that the R-R scalar �elds

transform in a chiral spinor representation of the duality group. This statement is

almost correct except that the �elds which transform in the spinor representation

are some rede�ned �elds involving not only the R-R �elds but also the NS-NS two

form.

The 10-dimensional supergravity action written in terms of the string metric

is given by

S =
Z
d10x
p
g e�2� (R + 4(r�)2 � 1

2 � 3!H
2)

�
Z
d10x
p
g (

1

2 � 2!F
2 +

1

2 � 4!F
02)

�1
4

Z
F(4) ^ F(4) ^ B + : : : ;

where we have not written the terms containing the fermionic �elds. The �rst line

contains only NS-NS �elds while the second contains the kinetic terms of the R-R

forms. The various �eld strengths are de�ned as follows

H = dB;

F = dA(1);

F(4) = dA(3);

F 0 = F(4) + A(1) ^ dB;
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where the subscript indicates the rank of the form. Note that R-R �elds couple

to the NS-NS �elds through the metric and through the F 02 term, which depends

on the antisymmetric NS-NS two-form.

Next we perform the dimensional reduction along coordinates xi for i = 1; 2; 3.

The massless scalars from the NS sector can be organized in the symmetric ma-

trix [75]

M =

0B@ G�1 �G�1B

BG�1 G� BG�1B

1CA : (4.1)

Note that M is also an element of the group SO(3; 3). Using a result from Ap-

pendix B, one can obtain the Weyl spinor representation ofM

S(M) =

0B@ detG�1=2 detG�1=2 bT

detG�1=2 b detG1=2 G�1 + detG�1=2 b bT

1CA ;
where b = �B, and the star denotes the operator which transforms an antisym-

metric matrix into its dual column matrix. The star operator always dualizes only

with respect to the compacti�ed coordinates.

One obtains additional scalars from the dimensional reduction of R-R forms.

As mentioned above these �elds do not have simple transformation properties

under the T-duality group but one can de�ne the following odd rank forms

C(1) = A(1); (4.2)

C(3) = A(3) � A(1) ^ B;

and organize them in a column matrix which, as will be seen shortly, transforms
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in a chiral spinor representation of the duality group

� =

0BBBBBBB@

C123

C1

C2

C3

1CCCCCCCA :

The other �elds can also be organized in representations of the duality group

such that the action obtained by dimensional reduction from 10-dimensional su-

pergravity is explicitly invariant. The six vectors obtained from the dimensional

reduction of NS-NS �elds transform in the fundamental representation while the

7-dimensional dilaton and the 7-dimensional space-time metric and 2-form are sin-

glets. The four vectors obtained from the R-R forms transform in a chiral spinor

representation and, after dualizing the 3-form, the rest of the bosonic �elds form

a chiral spinor of 2-forms.

For our purpose, it will be enough to consider the nonlinear sigma model part

of the action containing the kinetic terms of the scalar �elds of the theory

S =
1

2

Z
d7x

qeg � e�2� eg�� tr (@�M�1@�M) + eg�� @��TS(M) @� �
�
+ : : : ;

where eg�� and � are the 7-dimensional metric and dilaton, and we have not written

the kinetic term for the dilaton. The nonlinear sigma model part of the action is

written in a form that is explicitly invariant under SO(3; 3) and in fact the whole

supergravity action could be written in invariant form. The duality transforma-

tions of the scalar �elds are given by

�M = ��TM��1;

�� = S(�)�: (4.3)
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To prove the invariance of the action we used S(�T ) = S(�)T .

The main purpose of this section was to obtain the relations (4.2) which show

how the �elds � with simple transformations properties under the T-duality group

are related to the R-R forms.

4.2 T-duality of the Chern-Simon Type Terms

In this section, we discuss how to modify the NCSYM action so that it de-

scribes the DLCQ of M-theory in the presence of arbitrary moduli. In the auxil-

iary Type IIA string theory the additional moduli are constant R-R backgrounds

corresponding to generalized Wilson lines. Then we show that the action which

includes the new terms is also invariant under the duality group SO(3; 3 jZ) and

that the parameters of the new terms transform exactly as expected from string

theory.

First we will guess the form of these terms using our experience with the

commutative case which corresponds to a vanishing NS-NS background 2-form

B. In this case the compacti�ed Matrix model corresponding to n D0-branes

is described by a U(n) supersymmetric Yang-Mills theory. This is obtained by

performing a T-duality transformation along all the compact directions. However,

for nonvanishing R-R moduli, the action contains an additional Chern-Simon type

term [76, 77, 78, 79, 80]

SCS =
1

4(2�)3

Z
tr

 
e2�F

X
k odd

A(k)

!
;
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where A(k) are the the T-dual R-R �elds. Note also that under T-duality in all

directions the dual of B also vanishes if B was zero. This is why only F appears

in the exponent while in general one would also subtract the dual of B.

Next, consider the e�ect of a nonvanishing B on this action. If 
ij represents a

two cycle wrapped around directions xi and xj, then the deformation parameters

are de�ned by

�ij =
1

(2�)2

Z

ij
B:

In the super Yang-Mills part of the action the only change required by a nonvanish-

ing B was to make the coordinates noncommutative with deformation parameter

�. The metric and gauge coupling constant are the same as those obtained by

T-duality from the Matrix model for a vanishing NS-NS 2-form. We emphasize

that the metric of the NCSYM gauge theory is not the T-dual metric obtained

by �rst taking the inverse of E = G+� and then extracting the symmetric part.

The NCSYM metric Gij is just the inverse of the original metric. Thus one must

distinguish between a T-duality in all directions and the noncommutative Fourier

transformation relating the Matrix model and the NCSYM gauge theory.

Let us explain why the NCSYM metric is � independent. To compactify the

Matrix model on a torus we will �rst consider the Matrix model on the covering

space and then impose a quotient condition. If the B modulus is nonvanishing,

after going to the topologically trivial covering space, it can be gauged away.

However this gauge transformation does not leave the wave functions of strings

invariant and thus one must transform the translation operators implementing
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the quotient condition. The new translation operators do not commute and their

noncommutativity is measured by �.

Imposing the new quotient conditions on the Matrix action results directly in

the NCSYM gauge theory. The only di�erence with the B = 0 case is that one has

to use noncommutative Fourier transformations instead of the standard Fourier

transformations when going from the Matrix model to the NCSYM gauge theory.

This however does not result in a di�erent metric and gauge coupling constant.

The main point of this discussion was to show that one can trade a nonvanishing B

�eld for noncommutative coordinates on the dual super Yang-Mills gauge theory.

We assume that the parameters of the Chern-Simon terms are also the same

as for vanishing �, except that the new terms are de�ned on a noncommutative

torus. In particular for compacti�cation on a three torus one has

SCS =
1

4(2�)3

Z
tr

�
2�F ^ A(2) +

1

2
2�F ^ 2�F ^ A(0)

�
: (4.4)

Just as in the commutative case these terms are topological, supersymmetric and

gauge invariant. In this action � only appears through the noncommutativity of

the coordinates and A(0) and A(2) are the T-dual R-R forms2 calculated as if the

NS-NS 2-form vanishes

A(0) = �A(3); A(2) = � � A(1):

The 1-form R-R �eld A(1) has a lower index and should not be confused with

2When we write the R-R forms in components we will drop the rank of the form as it is

possible to identify the form from the position and number of indices.
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the Yang-Mills gauge �eld Ai. With this distinction in mind we will write the

action (4.4) in the dual Matrix theory language using the R-R backgrounds on the

original torus

SCS =
Z
dtTr

�
_X iAi +

i

2�
_X iXjXkAijk

�
;

where Tr is the formal trace over in�nite dimensional matrices divided by the

in�nite order of the quotient group [25]. It is convenient to write the action in

component notation

SCS =
1

2

Z
dt

Z
d3�

(2�)3
tr
�
"ijk

�
2�F0iAjk + (2�)2F0iF jkA

��
; (4.5)

where the magnetic and electric �eld strengths in the temporal gauge are

F0i = i[@0; Di]; F ij = i[Di; Dj]:

In the original conjecture [15], the large N limit of Matrix theory describes the

in�nite momentum frame of M-theory. Large N corresponds to a decompacti�ca-

tion of the light-cone direction and in this limit the � and A(1) can be set to zero.

Note that in M-theory these moduli correspond to C�ij and g�i and can be elimi-

nated by a gauge transformation and a reparametrization when x� is noncompact.

In that case only the last term in (4.5) survives, the action becomes commutative

and reduces to the action considered in [80, 81].

The action (4.5) is invariant under the SO(3; 3 jZ) duality group of the auxiliary

string theory. Consider a Chern-Simon type action de�ned on a �-bundle. Here

� is a SO(3; 3 jZ) spinor containing the rank of the group and the magnetic 
ux

numbers. We perform the same sequence of �eld rede�nitions used in [47], where it
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was shown explicitly for the case of vanishing R-R moduli, that the U(n) NCSYM

action is equivalent to a U(q) NCSYM action on a trivial bundle, where q is the

greatest common divisor of n and the magnetic 
uxes M . Let H = (C� + D)�1

be the matrix de�ned in [47], where C and D are the lower block components

of the SO(3; 3 jZ) transformation relating the original NCSYM gauge theory to

the theory on the trivial bundle with U(q) gauge group. Then one can make the

following constant curvature connection and �eld rede�nitions

cri def= (H�1)ijrj; bAi def= (H�1)ijA
j;

cDi def= (H�1)ijD
j;

bFkl = [crk; bAl]� [crl; bAk]� i[ bAk; bAl]:

The curvature can be split into a constant term and a 
uctuating piece

F ij = F ij
(0)

+H i
kH

j
l
bFkl; (4.6)

F0k = Hk
l
bF0l:

Using the matrices Q and R de�ned in [47] one can perform a change of integration

variables b� = �QR, which introduces a Jacobian factor

Z
d3� tr	(�) =

Z
d3b� det(Q�1) tr	(b�(QR)�1): (4.7)

Making the substitutions (4.6), (4.7) and collecting similar terms one �nds

SCS =
1

2(2�)2

Z
dt

Z
d3b� q

n
tr
�
"ijk

� bF0iA0 jk + 2� bF0i bF jkA0
��
;
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where

qA0 = (n detQ�1 detH)A;

"ijk qA
0 ij = H l

k "ijl n detQ
�1 (A ij + 2�F ij

(0)
A):

One can now rewrite the action in terms of new operators �0i, @
0i, and U 0, and a q

dimensional trace. See [47] for a more detailed discussion of this substitution.

SCS =
1

4(2�)3

Z
trq

�
2�F 0 ^ A0(2) + 1

2
2�F 0 ^ 2�F 0 ^ A0(0)

�
:

More generally the action is invariant under duality transformations if the

Chern-Simon parameters are related as follows

�A(0) = j det(C�+D)j�1=2A(0); (4.8)

�( �A(2) + 2� �F(0)
�A(0))�ndet �Q�1 = (C�+D)�T � (A(2) + 2�F(0)A

(0))n detQ�1;

where C and D are the lower block components of the SO(3; 3 jZ) matrix relating

the two theories, and the star operator is the duality operator acting only with

respect to the compact coordinates.

Next we write the Chern-Simon parameters in term of the �elds C discussed

in Section 4.1

A(0) = �(C(3) + C(1) ^�); (4.9)

A(2) = � � C(1): (4.10)

To obtain a compact form �rst de�ne the column matrices u and v with compo-

nents

ui =
1

2
M jkCijk � nCi;
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vi = �M ijCj:

If � transforms as a spinor, u and v are the block components of a SO(3; 3 jZ)

vector as shown in the Appendix (B.8). Then using the identities (2.50) listed in

Chapter 2, the transformation (4.8) can be written as

�C(3) + �C(1) ^ �� = j det(C�+D)j�1=2 (C(3) + C(1) ^ �); (4.11)

(�u� ���v) = (C� +D)�T (u��v): (4.12)

Comparing (4.11) and (4.12) with (B.6) and (B.4) in Appendix B one sees that

the R-R �elds must transform in a spinor representation of SO(3; 3 jZ)

�� = S(�)�:

Thus the duality transformations of all the parameters of the NCSYM, in-

cluding those of the Chern-Simon type terms, coincide with the transformation of

moduli of the Type IIA strings compacti�ed on a torus in the limit of vanishing

�0 and Gij.

Using the transformation properties of g�2SYM and A(0) it follows that the com-

plex coupling

� = A(0) +
4�i

g2SYM

also transforms simply under the T-duality group with the same � dependent

factor appearing in (4.8).

Finally note that the BPS spectrum corresponding to the electric 
uxes ob-
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tained in [52] is modi�ed in the presence of nonvanishing R-R moduli

EU(n) = gS

2
jn� 1

2
tr(M�)j�1

�((ni � ui)��ik(m
k � vk))Gij ((nj � uj)� �jl(m

l � vl)): (4.13)

This result agrees with the small volume limit of the spectrum formula in [50] and

reduces for vanishing �ij to the result of [82, 81]. In [83] it was shown that shifts

in the electric 
ux spectrum correspond to inequivalent geometric quantizations.

These di�erent quantizations are equivalent to the standard canonical quantization

if one also includes topological terms in the action.
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Chapter 5

T-duality of the BPS Spectrum

As shown in Chapter 2, the action of a U(n) NCSYM, with magnetic 
uxes

M ij, can be written as the action of a U(q) NCSYM on a trivial quantum bundle,

where q is the greatest common divisor of n and M ij. Thus these two theories

must have identical spectra. The action contains magnetic backgrounds which we

chose as in [47] so that the vacuum energy vanishes.

SU(n) = 1

g2SYM

Z
dt

Z
dd�

q
det(Gkl) tr

�
1

2
GijF0iF0j�

1

4
GijGkl(F ik �F ik

(0)
)(F jl � F jl

(0)
)+ (5.1)

1

2

X
a

_Xa _Xa � 1

2

X
a

Gij[D
i; Xa][Dj; Xa]+

1

4

X
a;b

[Xa; Xb][Xa; Xb] + fermions

1A :
All the equations in this chapter where d is unspeci�ed, are valid for the two and

three dimensional case, but some may have to be modi�ed in higher dimensions.

For simplicity we will consider the case when n andM ij are relatively prime. Then

one can �nd a duality transformation � such that �n = 1 and �M = 0 as was shown

in [47]. From this point on, when we discuss the U(n) theory we will use the the

d-dimensional block matrices (2.42), with � the particular transformation that

takes the U(n) theory into a U(1) theory. For example the constant background
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�eld strength can be expressed in terms of the block components of � as

F(0) =
�1
2�

(C�+D)�1C: (5.2)

One can write the connection as a sum of a constant curvature U(1) connection

ri, a zero mode Ai
(0)
, and a 
uctuating part Ai

ri � iAi
(0)
1� iAi(Zj) = @i + iF ij�j � iAi

(0)
1� iA i(Zj):

Note that Ai does not contain the zero mode. The Zi's are n-dimensional matrices

which generate the algebra of adjoint sections. For example, in the two dimensional

case one has [49, 27, 36, 40, 47]

Z1 = ei�iQ
i
1
=nV b; Z2 = ei�iQ

i
2
=nU;

where U and V are the clock and shift matrices and Q is a two dimensional matrix

which reduces to the identity in the commutative case. Substituting this in the

action gives

SU(n) = 1

g2SYM

Z
dt

Z
dd�

q
det(Gkl) tr

1

2
Gij@

0Ai
(0)
@0A

j
(0)

+ : : : ;

where the dots stand for terms containing only A i. Thus classically the zero modes

decouple, and the action is just that of a free particle

SU(n)
(0)

=
Z
dt

(2�)2

2
Mij

_Ai
(0)

_Aj
(0)
;

where the mass matrix is given by

Mij = jn� 1

2
tr(M�)j (2�)

d�2
q
det(Gkl)

g2SYM
Gij: (5.3)
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In the commutative case the �rst factor on the right hand side of (5.3) reduces to n

and arises from taking the trace. The origin of this factor in the noncommutative

case was discussed in [27, 47]. The corresponding Hamiltonian is then1

HU(n)
(0)

=
1

2
MijE

(0)

i E
(0)

j ; (5.4)

whereMij is the inverse mass matrix and E
(0)

i is the momentum conjugate to Ai
(0)

E
(0)

i =
1

2�i

@

@A(0)

:

Note that E
(0)

i correspond to zero modes of the electric �eld.

5.1 The U(1) BPS Spectrum

Before calculating the spectrum of (5.4) directly, we will use the duality invari-

ance of the spectrum and obtain it by using the simpler dual U(1) theory. We will

use primes for all the variables in the U(1) theory. In this case the mass matrix

takes the form

M0
ij =

(2�)d�2
q
det(G0kl)

g02SYM
G0
ij: (5.5)

Just as in the commutative U(1) supersymmetric gauge theory [84] the zero modes

live on a torus. To see this consider the gauge transformations

U 0
i = ei�

0
i :

These gauge transformations are single valued and leave the trivial transition

functions invariant. Under these gauge transformations the connection transforms

1This only includes the energy coming form the electric zero modes.
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as

U 0�1
j (@0

i � iA0i
(0)
� iA0i(U 0

k))U
0
j = @0

i � i(A0i
(0)
� Æij)� iA0i(e�2�i�

0
jkU 0

k):

For vanishing �0 the e�ect of these gauge transformations is just a shift of the

zero mode and one has the following gauge equivalences A0i
(0)
� A0

i
(0)

+ Æij. Note

that Æi
(j) for j = 1; : : : ; d form a basis for a lattice L0 and the con�guration space

is Rd=L0. The conjugate momenta are then quantized

E
0(0)
i = n0i;

and the spectrum of zero modes is then given by

EU(1) = 1

2
M0ijn0in

0
j:

However in the noncommutative case one can see that the above gauge transfor-

mations also produces a translation in the k direction proportional to �0
jk. This

results in a modi�cation of the spectrum similar to the Witten-Olive e�ect [53].

Let as de�ne the total momentum operator operators P 0
i such that

[P 0i;	] = �i @0i	; (5.6)

where 	 is an arbitrary �eld of the theory. The momentum P 0i de�ned by (5.6) is

not the standard gauge invariant total momentum but the di�erence between the

two is the generator of a gauge transformation with the gauge parameter equal

to the i-component of the gauge �eld. Thus on gauge invariant states the total

momentum de�ned above and the gauge invariant momentum have the same e�ect.
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The operator generating the gauge transformation is [50, 51]

exp(2�i(E
0(0)
j +�0

jkP
0k)): (5.7)

Translation by an integral number of periods on a trivial bundle must leave the

physical system invariant. The operators generating these translations are given

by

exp(2�iP 0k): (5.8)

The operators (5.7) and (5.8) act as the identity on physical states so one obtains

the quantization

E
0(0)
j +�0

jkP
0k = n0j; P 0j = m0j;

where nj and m
j are integers. The spectrum of zero modes is then given by

EU(1) = 1

2
M0ij(n0i ��0

ikm
0k)(n0j ��0

jlm
0l):

This result has the following geometric interpretation. In the sectors of nonvan-

ishing momentum the wave function for the zero modes is not strictly speaking a

function but rather a section on a twisted bundle over the torus Rd=L0 with twists

given by exp (�0
ikm

0k).

5.2 Dual U(n) BPS Spectrum

Using the duality transformations (1.5) we can express the spectrum in terms

of the U(n) parameters

EU(n) = 1

2

g2SYM

(2�)d�2
q
det(Gij)

j det(C�+D)j�1=2 (5.9)
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�Gij(ni ��ikm
k)(nj ��jkm

k);

where we also performed a duality transformation on the quantum numbers [50, 51]0B@ n0i

m0i

1CA =

0B@ A B
C D

1CA
0B@ ni

mi

1CA : (5.10)

Next consider in more detail the two dimensional case. The parameters of the

U(1) and U(n) NCSYM are related by the SO(2; 2 jZ) transformation [47]

� =

0B@ aI2 b"

�m" nI2

1CA ; (5.11)

where " is a two dimensional matrix with the only nonvanishing entries given by

"12 = �"21 = 1. In this case (C�+D)ij = (n+ �m) Æij and the spectrum is

EU(n) = 1

2

g2SYM

(2�)d�2 jn+ �mj
q
det(Gkl)

Gij(ni + �mi)(nj + �mj);

where mi = "ijmj. This result
2 has the expected factor of jn+ �mj in the denom-

inator. In the DLCQ formulation of M theory this factor is proportional to the

kinetic momentum in the compact light-like direction and is expected to appear

in the denominator of the DLCQ Hamiltonian.

Next the spectrum is obtained directly in the U(n) theory. We will do this in

two ways. First, consider the generators of the adjoint algebra, the Zi's. These

generators satisfy

Zk(�i + 2�Æ
j
i ) = 
jZk(�i)


�1
j : (5.12)

2Expressed in terms of the string coupling constant of the auxiliary string theory the spectrum

takes the simpler form EU(n) = 1
2
gsjn+ �mj�1Gkl(nk + �mk)(nl + �ml).
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Besides having the privileged role of generators for the sections of the adjoint

bundle, the Zi's can also be used to perform gauge transformations since they are

unitary. Next, rewrite (5.12) as


j = Zk(�i + 2�Æji )
�1
jZk(�i): (5.13)

The right hand side of (5.13) gives the transformation of the transition functions

under the Zi gauge transformation. One can see that, just as in the U(1) case

where the gauge transformations U 0
i left the transition functions trivial, the Zi's

leave the transition functions invariant. Following the same strategy as in the U(1)

case, where we used the U 0
i to �nd the con�guration space of the zero modes, we

will use here Zi

Z�1j (ri � iAi
(0)
1� iAi(Zk))Zj =

ri � i(Ai
(0)
� ((C� +D)�1)ij)1� iAi(e�2�i�

0
jkZk):

Note that again we have separated the zero mode of the gauge connection and we

have used the identity [47]

[ri; Zj] = i((C�+D)�1)ij Zj:

One can express the gauge transformed connection as

e�2�(A�+B)jkr
k
�
ri � iAi

(0)
1� iAi(Zk)

�
e2�(A�+B)jkr

k

+ iA i
j 1; (5.14)

where we used

(C�+D)�1 = (A��0C)T
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and (5.2) to rewrite the extra shift in the zero mode.

Next we de�ne the momentum operator by its action on the �elds of the theory.

For example on the gauge �elds P i acts as

[P i; A
j
(0)
1 + Aj(Zk)] = �i[ri; Aj(Zk)]� iF ij

(0)
: (5.15)

Note that P i also acts on the zero mode Ai
(0)
. This can be understood as follows.

When de�ning the momentum there is a choice whether to include as part of the

system the magnetic background F ij
(0)
. The standard gauge invariant momentum

for which the momentum density is tr(F ijEj) can be written as the sum of two

terms. The �rst is just the momentum translating the part of the system that does

not include the magnetic background and whose momentum density is tr((F ij �

F
ij
(0)
)Ej). The second term is an operator shifting the zero mode of the gauge

�eld as in (5.15). Then our P i can be identi�ed, up to the generator of a gauge

transformation, with the total momentum that includes the magnetic background.

Furthermore, one can identify, up to the generator of a gauge transformation, the

�rst term on the right hand side of (5.15) as the action of the momentum operator

that translates only the 
uctuating part. As will be seen later it is the momentum

whose density is tr(F ijEj) that appears in the SO(d; d jZ) duality transformation.

A convenient way of writing the action of P i on the gauge �eld is

[P i;�iAj
(0)
1� iAj(Zk)] = �i[ri;rj � iAj

(0)
1� iAj(Zk)]:

Then using (5.14) one sees that the quantum operator which implements the gauge
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transformation above is given by

exp
�
2�i(A k

j (E
(0)

k +�klP
l) + BjkP k)

�
: (5.16)

The momentum operator P i has integer eigenvalues since the space is a torus with

lengths 2�. One can also see this by considering the operator

exp
�
2�i(CjiE(0)

i + (Cjk�ki +Dj
i)P

i)
�
: (5.17)

This acts trivially on every operator in the U(n) theory. In particular the combi-

nation of operators in the exponent has no e�ect on the zero mode. The condition

that (5.16) and (5.17) should act as the identity on the physical Hilbert space is

equivalent to the quantization

A k
j (E

(0)

k +�klP
l) + BjkP k = n0j;

Cjk(E(0)

k +�klP
l) +Dj

kP
k = m0j:

Since the matrices A;B; C; and D are the block components of an element of

SO(d; djZ) this is equivalent to

E
(0)

j +�jkP
k = nj; P j = mj;

where nj and m
j are integers. Using the Hamiltonian (5.4) and the above quan-

tization the electric 
ux spectrum is

EU(n) = 1

2

g2SYM

(2�)d�2
q
det(Gij)

jn� 1

2
tr(M�)j�1

�Gij(ni ��ikm
k)(nj ��jkm

k); (5.18)
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which is identical to the result (5.9) obtained by duality.

Finally we present an alternative derivation of the spectrum using the gauge

transformations exp(i��i) where ��i = �jQ
j
i and Q

j
i is a matrix de�ned in [47] and

equals the identity for vanishing deformation parameter or magnetic background.

This derivation is closely related to the derivation of the spectrum in [50, 51].

As discussed in [47] gauge invariant quantities such as the Lagrangian density

have periodicity 2� in the ��i variables. Then one can use �Ui = exp(i��i) as a

gauge transformation just as one used U 0
i in the U(1) theory. Note �rst that

�Ui is a globally de�ned gauge transformation. It is convenient to write it as

�Ui = Ui e2��ijr
j

. Here Ui = ei�i�2��ij@
j

and is the variable implementing the

quotient condition [27]. The e�ect of this gauge transformation is

�U�1
j (ri � iAi

(0)
1� iAi(Zk)) �Uj =

e�2��ijr
j

(ri � iAi
(0)
1� iAi(Zk))e

2��ijr
j

+ i Æij:

The operator implementing this gauge transformation in the Hilbert space is

exp
�
�2�i(E(0)

k +�klP
l)
�
:

Again, on gauge invariant states this operator acts trivially and together with the

quantization of the momentum results in the same spectrum (5.18) as using Zi.

Note that the second method of deriving the U(n) spectrum is similar in spirit to

the derivation of the U(1) spectrum. For example the gauge transformation is an

element of the U(1) subgroup. However, the �rst derivation is instructive since it

exhibits inside the U(n) theory the dual U(1) theory variables such as P 0i and E 0
i.
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Chapter 6

Duality Invariance

In the remainder of the thesis, we will be discussing self-duality of the type

�rst noticed in the Maxwell electromagnetic theory, which is invariant when one

replaces the �eld strength with its Hodge dual. Very few theories with this type of

invariance are known. The U(1) Born-Infeld is one example. Although in certain

limits it reduces to the Maxwell theory, the Born-Infeld theory is non-linear. We

will, in fact, �nd a number of generalizations of this theory which possess non-

linear self-duality. In this chapter, we describe how the theory of self-duality

introduced in [3, 4] is modi�ed when we consider complex abelian gauge �elds.

We begin by considering a linear action of the duality group which mixes the

�eld strengths and their duals but not their complex conjugates. We will refer to

this as a holomorphic action. Under these conditions, the largest allowed duality

group is U(n; n) where n is the number of complex gauge �elds. If we do not

require a holomorphic action, n complex gauge �elds are equivalent to 2n real

gauge �elds in which case the largest possible duality group is Sp(4n; R). Later,

in Section 8.1, we will also introduce a Born-Infeld action with real gauge �elds

which we show to have the largest allowed duality group given the number of gauge

�elds. However, the arguments leading to this involve Lagrangians with complex
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gauge �elds.

Consider a theory of n complex abelian gauge �elds and a scalar �eld S which

is an n-dimensional complex matrix. Here we do not require S to be symmetric

and as a result we �nd a larger duality group than the one appearing in [54]. The

gauge �elds only enter in the Lagrangian through their �eld strengths F a, where

a = 1; : : : ; n, and their complex conjugates �F a

L = L(F a; �F a; S; : : :) : (6.1)

The dots in (6.1) represent possible auxiliary �elds which could also be present

in L. As we will show later, with the scalar �eld S present the duality group is

noncompact while without the scalar �eld only the maximal compact subgroup

survives. We can also add to this Lagrangian a kinetic term for the scalar �eld S.

As explained in [3] additional physical �elds, e.g. spinors, can also be introduced,

but we shall not consider them explicitly in this paper except in Section 8.2 where

the supersymmetric Born-Infeld theory is discussed.

The dual �eld strength, or rather the Hodge dual of the dual �eld strength,

eGa
�� =

1

2
"����G

a ��, is de�ned as

~Ga
�� � 2

@L

@ �F a ��
; ~�G

a

�� � 2
@L

@F a ��
: (6.2)

Throughout this paper we will assume that we are in four space-time dimensions,

except in Section 8.3, where we will show how to generalize our results to theories

in even space-time dimensions.

The equations of motion and Bianchi identities transform covariantly under
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the following holomorphic in�nitesimal transformations

Æ

0B@ G

F

1CA =

0B@ A B

C D

1CA
0B@ G

F

1CA : (6.3)

Let � denote all the scalar �elds appearing in the Lagrangian and �� = @�� . The

in�nitesimal transformations of the scalar �elds are given by

Æ�i = �i(�) ; (6.4)

where �i are components of a vector �eld on the scalar �eld space. The most gen-

eral Lagrangian, neglecting possible fermionic �elds, has the form L(F; �F ; �; ��) .

Its variation under (6.3)(6.4) can be written as

ÆL =

"
Æ� + (GCT + FDT )

@

@F
+ ( �GCy + �FDy)

@

@ �F

#
L ;

where Æ� L is given by

Æ� L = (�i
@

@�i
+ �j�

@�i

@�j
@

@�i�
)L :

The variation of the Lagrangian must satisfy certain consistency conditions. First

note that

@

@F
(ÆL) = Æ

 
@L

@F

!
+
@G

@F
CT @L

@F
+DT @L

@F
+
@ �G

@F
Cy @L

@ �F
:

Using (6.2) we obtain

Æ e�G = 2
@

@F
(ÆL)� �GC

@ eG
@F
� @ �G

@F
Cy eG� e�GD ; (6.5)

and this should be consistent with the variation obtained from (6.3)

Æ e�G = e�GAy + e�F By : (6.6)
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Equating (6.5) and (6.6) we obtain the consistency condition

@

@F

�
ÆL� 1

4
�G(Cy + C) eG� 1

4
�F (By +B) eF� = (6.7)

@L

@F
(D + Ay) +

1

4
�G(C � Cy)

@ eG
@F
� 1

4

@ �G

@F
(C � Cy)G+

1

4
e�F (By � B) :

The right hand side of the above equation must be a total derivative since the left

hand side is one. This is possible if

Ay +D = "I ; By = B ; Cy = C ;

where " is a real parameter. These are the relations of the fundamental represen-

tation of the U(n; n) � IR? Lie algebra1. We will only consider the case when "

vanishes. Thus we assume

Ay = �D ; By = B ; Cy = C : (6.8)

The relations (6.8) de�ne the fundamental representation of the Lie algebra of

U(n; n). However, in general the transformations (6.4) of the scalar �elds can be

implemented only for a subgroup H of U(n; n). The duality group H depends

both on the �eld content and the nature of the interactions of the scalar �elds.

Using (6.8) the consistency condition (6.7) can be written as

@

@F

�
ÆL� 1

2
�FB eF � 1

2
�GC eG� = 0 : (6.9)

Another consistency condition is obtained by applying the Euler operator

@

@�i
� @� @

@�i�
1IR? denotes the group of nonvanishing real numbers.
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on the variation of the Lagrangian. Just as in the derivation of [3], by assum-

ing (6.8) we obtain

 
@

@�i
� @� @

@�i�

!�
ÆL� 1

2
�FB eF � 1

2
�GC eG� = ÆEi +

@�j

@�i
Ej ; (6.10)

where Ei is the left hand side of the equation of motion for the �eld �i

Ei =
@L

@�i
� @� @L

@�i�
:

A suÆcient condition to satisfy the consistency equation (6.9) is given by

ÆL =
1

2
( �FB eF + �GC eG) : (6.11)

This is equivalent to the invariance of the following combination

L� 1

4
�F eG� 1

4
F e�G : (6.12)

Using (6.11) in (6.10) we obtain

ÆEi = �@�
j

@�i
Ej ; (6.13)

showing that the equations of motion for the scalar �elds form a multiplet under

the duality groupH. In the examples discussed in this paper the duality group will

be U(n; n) for complex gauge �elds and Sp(2n; IR) for real gauge �elds. Ignoring

a possible IR? factor, present only for a nonvanishing ", we will refer to these as

the maximal noncompact duality groups.

The corresponding �nite duality transformations are given by0B@ G0

F 0

1CA =M

0B@ G

F

1CA : (6.14)
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Here M is an U(n; n) matrix satisfying

M y IKM = IK ; (6.15)

where M and IK have the block form

M =

0B@ a b

c d

1CA ; IK =

0B@ 0 1

�1 0

1CA :

Note that the invariant IK de�ning U(n; n) is the usual o� diagonal symplectic

form. This explains the similarity of our results with the real case discussed in [3].

One can check that (6.15) implies the following relations for the block components

of M

cya = ayc ; byd = dyb ; dya� byc = 1 : (6.16)

The in�nitesimal relations (6.8) can be obtained from the �nite relations (6.16)

using

a � 1 + A ; b � B ; c � C ; d � 1 +D :

In much of this paper we consider Lagrangians which do not depend on the

scalar �eld S, i.e. they depend only on the gauge �eld strengths and perhaps

auxiliary scalar �elds, and are invariant only under the maximal compact subgroup

U(n)�U(n) of U(n; n). Then there is a way to introduce the scalar �eld S which

extends the duality group to U(n; n). The maximal compact subgroup U(n)�U(n)

is the subgroup of U(n; n) obtained by requiring (6.16) and

a = d ; b = �c :
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The corresponding in�nitesimal relations are (6.8) and

A = D ; B = �C :

Let L(F; �F ) be a Lagrangian describing a theory invariant under U(n) � U(n),

where we suppress the dependence on the auxiliary �elds. Then we de�ne a new

Lagrangian

L(F; �F ; S1; R; R
y) � L(RF; �FRy) +

1

2
Tr(S1 ~F �F ) ; (6.17)

where S1 is a hermitian n-dimensional matrix and R is a nondegenerate n-

dimensional matrix. This Lagrangian describes a theory invariant under U(n; n)

if we transform the scalar �elds S1 and R as discussed below. As we will see, the

duality invariance of the theory described by L implies that L depends on R and

Ry only through the hermitian positive de�nite matrix

S2 = RyR : (6.18)

We also de�ne S � S1 + iS2. Under the duality group S transforms by fractional

transformation

S 0 = (aS + b)(cS + d)�1 ; (6.19)

whose in�nitesimal form is

ÆS = B + AS � SD � SCS : (6.20)

It is also convenient to write down the transformation of S2

S 0
2
= (cS + d)�yS2(cS + d)�1 : (6.21)
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In (6.21) and below we use the notation �y for the hermitian conjugate of the

inverse.

Next we show that the Lagrangian L de�ned in (6.17) corresponds to a U(n; n)

duality invariant theory. We follow closely [64] where the case of real gauge �elds

was considered. The proof in [64] generalizes the introduction of a single complex

scalar �eld for a U(1) interacting theory discussed in [9, 10]. Using the fact that

L(F; �F ) satis�es (6.11) with compact duality rotations we have

�Ga eGb + �F a eF b = 0 ; (6.22)

�Ga eF b � �F a eGb = 0 : (6.23)

The relation (6.22) corresponds to transformations with A = 0 while (6.23) is

obtained by setting C = 0. We now introduce some convenient notation

F = RF ; e�G = 2
@L(F ; �F)

@F : (6.24)

Given a Lagrangian L which depends on F but not its derivatives, we may

rewrite (6.22) and (6.23) as

�Ga eGb + �Fa eF b = 0 ; (6.25)

�Ga eF b � �Fa eGb = 0 : (6.26)

We would like to show that under an in�nitesimal U(n; n) duality transforma-

tion the change in the Lagrangian L de�ned in (6.17) satis�es the duality condi-

tion (6.11)

(ÆF + Æ �F + ÆS1 + ÆR + ÆRy)L =
1

2
( �FB eF + �GC eG) : (6.27)
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A transformation law for R which is consistent with the relation RyR = S2

and the duality transformation (6.21) of S2 is given by

R0 = R(cS + d)�1;

whose in�nitesimal transformation is ÆR = �R(CS+D) . This choice is somewhat

arbitrary since equation (6.23) is equivalent to the Lagrangian L being invariant

under left multiplication of the gauge �eld strength by unitary matrices U

L(UF; �FU y) = L(F; �F ) :

This ensures that left multiplication ofR by a unitary matrix leaves the Lagrangian

L invariant. It follows that the Lagrangian L only depends on S2 and not on

the speci�c R chosen2, as we have already mentioned. Any variation of the form

ÆR = 
R�R(CS+D), where 
 is anti-hermitian, would still preserve the relation

RyR = S2.

Using the above transformation of R one can show that (6.27) is equivalent to

the vanishing of the following expression

eGa �Gb � eGa( �FS1)
b � (S1 eF )a �Gb + (S1 eF )a( �FS1)b + (S2 eF )a( �FS2)b+

�i
�
(S2 eF )a �Gb � (S2 eF )a( �FS1)b � eGa( �FS2)

b + (S1 eF )a( �FS2)b� :
Using the relation G = R�y(G�S1F ), which follows from (6.2) and (6.24), the �rst

and second lines of this expression are equivalent to the left hand side of (6.25)

2Note that S2 is a positive de�nite hermitian metric and R is a vielbein. The Lagrangian

only depends on the metric and the arbitrariness in the choice of vielbein introduces a U(n)

gauge invariance.
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and (6.26) respectively. Thus (6.27) is satis�ed concluding the proof that the

theory with the Lagrangian L is invariant under U(n; n).

Conversely, if we are given a Lagrangian L with equations of motion invariant

under U(n; n) we can obtain a theory without the scalar �eld S by setting S =

i. Then the duality group is broken to the stability group of S = i which is

U(n)� U(n), the maximal compact subgroup. Thus we can easily move between

the theory with a scalar �eld S and the theory without S.

We also give the in�nitesimal transformation of F and G

ÆG = RCRyG � iRCRyF ; (6.28)

ÆF = �RCRyF � iRCRyG :

The last term in (6.28) is a unitary transformation and could be canceled by using

a di�erent choice for the transformation of R. The �rst term is an in�nitesimal

duality transformation belonging to the maximal compact subgroup U(n)�U(n).

Note however that it is a space-time dependent duality transformation.

Next we �nd the di�erential equation that a Lagrangian must satisfy if the

equations of motion are invariant under the maximal compact duality group. We

are therefore considering a Lagrangian without the scalar �eld S. We will also

assume that the auxiliary �elds have been eliminated, the �eld strengths appear

in the Lagrangian only through the Lorentz invariant combinations

�ab � 1

2
F a �F b; �ab � 1

2
eF a �F b; (6.29)

and that the Lagrangian is a sum of traces (or of products of traces) of monomials
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in � and �. If the Lagrangian has such a form, equation (6.23) is satis�ed. Then

under a compact duality transformation the variation of the Lagrangian is

ÆL = Tr(L�Æ� + L�Æ�) ;

where we de�ne

L� � @L
@�T

; L� � @L
@�T

:

Using the de�nitions (6.2) and (6.29), we �nd that (6.22) is equivalent to

L��L� � L��L� + L��L� + L��L� + � = 0 : (6.30)

This is a generalization of the di�erential equation introduced in [10] where the

case of a single real gauge �eld was considered. Equation (6.30) is invariant under

the following transformation

�0 = � ; (6.31)

� 0 = �� :

If one considers a self-dual theory with n real �eld strengths FR, where now �

and � are de�ned by �ab = 1=4 F a
RF

b
R and �ab = 1=4 F a

R
~F b
R, equation (6.30) still

holds. In this case one can extend the duality group from U(n) to Sp(2n; IR) by

introducing scalar �elds as in [64]. Although these remarks will be central in later

arguments, their proofs closely resemble those in the case of complex �elds, so we

omit them.
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Chapter 7

The Abelian Born-Infeld Action

In this chapter, we introduce a generalization of the U(1) Born-Infeld action

with complex gauge �elds and with a U(n; n) self-duality group. In Section 7.1,

we write the action using auxiliary �elds, which greatly simpli�es the check of

duality invariance. We go on to eliminate the auxiliary �elds in Section 7.2.

We are then able to write down an explicit action without auxiliary �elds by

using a mathematical result about unilateral matrix equations, which is proven in

Section 7.3.

7.1 Born-Infeld with Auxiliary Fields

In this section, we describe a U(n; n) duality invariant nonlinear gauge theory

with n complex gauge �elds [54]. The use of auxiliary �elds in the Lagrangian is

inspired by the work of [55, 56] and simpli�es the check of duality invariance.

We begin with the following Lagrangian introduced in [54]

L = ReTr [ i(�� S)�� i

2
��S2�

y + i�N ] ; (7.1)

where N = � � i� . As mentioned in Chapter 6, here we do not require S to be

symmetric. The auxiliary �elds � and � are n dimensional complex matrices. If we

could solve their equations of motion and use the solution in the Lagrangian (7.1)
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we would �nd a Lagrangian which depends only on �, � and S. Obtaining this

Lagrangian is the main thrust of this chapter.

If we set S = i in the above Lagrangian, the theory is only self-dual under the

maximal compact subgroup U(n)� U(n), as discussed in Chapter 6. However, if

we now reintroduce the scalar �eld as in (6.17), the new Lagrangian is the same

as (7.1) only after �eld rede�nitions of � and �. We can also add a kinetic term for

the scalar �eld S. This term must be duality invariant since, as we will see shortly,

the rest of the Lagrangian already satis�es the self-duality condition (6.11). For

example we can add a nonlinear �-model Lagrangian de�ned on the coset space

U(n; n)=U(n)� U(n) with the metric given by

Tr
h
(Sy � S)�1dSy(S � Sy)�1dS

i
: (7.2)

The metric (7.2) is K�ahler since it is obtained from the K�ahler potential

K = Tr ln(S2) : (7.3)

This K�ahler potential changes by a K�ahler transformation under (6.20); this en-

sures that the metric is duality invariant.

It will be convenient to decompose the auxiliary �elds into hermitian matrices,

as we have already done for S,

S = S1 + iS2 ; � = �1 + i�2 ; � = �1 + i�2 :

To prove the duality of (7.1) we �rst note that the last term in the Lagrangian

can be written as

ReTr [ i�(�� i�) ] = Tr(��2� + �1�) :
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If the �eld � transforms by fractional transformation and the �i's and the gauge

�elds are real this is the U(1)n Maxwell action, with the gauge �elds interacting

with the scalar �eld �, and this term by itself has the correct transformation

properties under the duality group [3]. Similarly for hermitian �, � and �i this

term by itself satis�es equation (6.11). It follows that the rest of the Lagrangian

must be duality invariant. The duality transformations of the scalar and auxiliary

�elds are

S 0 = (aS + b)(cS + d)�1; (7.4)

�0 = (a�+ b)(c� + d)�1; (7.5)

�0 = (c�+ d)�(cSy + d)y: (7.6)

To show the invariance of Tr[i(�� S)�] it is convenient to rewrite (7.4) as

S 0 = (cSy + d)�y(aSy + b)y:

The proof of invariance of the remaining term which can be written as

ReTr [� i
2
��S2�

y] = Tr [
1

2
�2�S2�

y] ;

is straightforward using the following transformations obtained from (7.4), (7.5)

and (7.6)

S 0
2

= (cSy + d)�yS2(cS
y + d)�1;

�0
2

= (c�+ d)�y�2(c�+ d)�1; (7.7)

�0y = (cSy + d)�y(c�+ d)y :
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The Lagrangian has also a discrete parity symmetry which acts on the �elds

as

�0 = �� ;

� 0 = ��� ;

S 0 = � �S ; (7.8)

�0 = �� ;

�0 = ��� :

Although the theory of duality invariance presented in the previous section

guarantees that this theory is self-dual, one can also check directly that the equa-

tions of motion obtained by varying the auxiliary �elds are preserved under duality

rotations. These equations of motion are

L� � @L

@�T
= i(�� 1

2
�S2�

y + �� i�) = 0 ; (7.9)

L� � @L

@�T
= i(�� S � iS2�y�2) = 0 ; (7.10)

and indeed these two equations form a multiplet under duality transformations.

Using the explicit forms (7.9) and (7.10) one can check that

ÆL� = (C�+D)L� + L�(�C +Dy) + �L�C ;

ÆL� = �(SC +Dy)L� � L�(C�+D) :

Alternatively, one can obtain these equations directly from (6.13).

7.2 Elimination of the Auxiliary Fields

106



In this section, we study the equation of motion (7.9) and attempt to solve for

�. We then give the form that the Lagrangian assumes after the elimination of

the auxiliary �elds. This form is a generalization of the well-known Born-Infeld

Lagrangian to more than one gauge �eld.

Using the equation of motion (7.9) in the Lagrangian (7.1), we obtain

L = ReTr [�iS�] = Tr [S2�1 + S1�2 ] ; (7.11)

where � is now a function of �, � and S2 that solves (7.9). For n = 1, we have to

solve a second order algebraic equation and we obtain

� =
1�

q
1 + 2S2�� S2

2�
2

S2
+ i� :

Apart from the fact that the gauge �elds are complex, the result is the Born-Infeld

Lagrangian

L = 1�
q
1 + 2S2�� S2

2�
2 + S1� : (7.12)

In fact, for n = 1 we could have taken the gauge �elds to be real even in the

formulation with auxiliary �elds as in [56], in which case the duality group becomes

the Sp(2; IR) subgroup of U(1; 1) obtained by requiring a, b, c and d to satisfy (6.16)

and to be real.

We now study equation (7.9) for arbitrary n. First notice that (7.9) can be

simpli�ed with the following �eld rede�nitions

b� = R�Ry ;

b� = R�Ry ; (7.13)

b� = R�Ry ;
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where, as in (6.18), RyR = S2. The equation of motion for � is then equivalent to

b�� 1

2
b�b�y + b�� i b� = 0 : (7.14)

This is the same equation we would have obtained for � if we would have set the

scalar �eld S = i initially, and thus broken the duality group to U(n)�U(n). For

the rest of this section we will take this point of view, unless otherwise stated. Since

we can always reintroduce the scalar �eld via the prescription given in Chapter 6

we choose to drop the tildes in the above equation. Then the equation of motion

obtained by varying � gives the following equation for �

�� 1

2
��y + �� i� = 0 ; (7.15)

and after solving this equation the Lagrangian reduces to

L = ReTr� :

Let � = �1 + i�2 where �1 and �2 are hermitian. The anti-hermitian part

of (7.15) implies �2 = � , thus �y = � � 2i�. This can be used to eliminate �

from (7.15) and obtain a quadratic equation for �y. It is convenient to de�ne

Q = 1

2
�y which then satis�es

Q = q + (p� q)Q+Q2; (7.16)

where

p � �1
2
(�� i�) ; q � �1

2
(�+ i�) :

The Lagrangian is then

L = 2ReTrQ : (7.17)
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If the degree of the matrices is one, we can solve for Q in the quadratic equa-

tion (7.16) and then (7.17) reduces to the Born-Infeld Lagrangian.

For matrices of higher degree, equation (7.16) can be solved perturbatively and

by analyzing the �rst few terms in the expansion we conjectured in [54, 85] that

the trace of Q can be obtained as follows. First, �nd the perturbative solution of

equation (7.16) assuming p and q commute. Then the trace of Q is the trace of

the symmetrized expansion

TrQ =
1

2
Tr

�
1 + q � p� S

q
1� 2(p+ q) + (p� q)2

�
; (7.18)

where the symmetrization operator S will be discussed in the next section. We

have also found an explicit formula for the coeÆcients of the expansion of the

trace of Q

TrQ = Tr

264 q + X
r;s�1

0B@ r + s� 2

r � 1

1CA
0B@ r + s

r

1CAS( prqs )
375 : (7.19)

In the next section, we will prove that for a unilateral matrix equation of order

N , the perturbative solution is a sum of terms which are symmetrized in all the

matrix coeÆcients as well as terms which are commutators. Since equation (7.16)

is a unilateral matrix equation, the trace of Q will be symmetrized in the matrix

coeÆcients q and p� q. This is equivalent to symmetrization in q and p, and also

equivalent to symmetrization in � and �. Because we know the solution Q when �

and � commute, and now we know the ordering prescription, our conjecture (7.18)

follows. In terms of � and �, the Lagrangian becomes

L = Tr [ 1� S
q
1 + 2b�� b�2 + S1� ] ; (7.20)
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where we have reintroduced the scalar �eld S and enhanced the duality group to

U(n; n).

7.3 Unilateral Matrix Equations

In this section, we prove a theorem regarding certain solutions of unilateral

matrix equations. These are N th order matrix equations for the variable � with

matrix coeÆcients Ai which are all on one side, e.g. on the left

� = A0 + A1�+ A2�
2 + : : :+ AN�

N : (7.21)

The matrices are all square and of arbitrary degree. We may equally consider

the Ai's as generators of an associative algebra, and � an element of this algebra

which satis�es the above equation. We will prove that the formal perturbative

solution of (7.21) around zero is a sum of symmetrized polynomials in the Ai and

of terms which are commutators1. The same is true for all the positive powers of

the solution.

By repeatedly inserting � from the left hand side of (7.21) into the right hand

side we obtain the perturbative expansion of � as a sum

� =
X
M

DM ;

where each DM is a product of the Ai matrices. Any ordered product of these

matrices will be referred to as a word. However not every word appears in the

1If the degree of the matrices is one the perturbative solution is convergent if A0 and A1 are

suÆciently small.
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perturbative expansion of �. We reserve the letter D for words that do appear2.

Next we obtain the condition that a word must satisfy in order to be in the

expansion. First note that because of (7.21) any word DM can be written as the

following product

DM = AsDM1
: : :DMs

(7.22)

for some value of s, where the DMi
's are also words in the expansion. Conversely,

if all the DMi
's are words in the expansion, DM de�ned in equation (7.22) is also

a word in the expansion. By iterating (7.22) we obtain the following equivalent

statement: for every splitting of DM into two words DM = W1W2 the second word

can be written as a product of terms in the expansion of �

DM = W1DN1 : : :DNk
:

It is convenient to assign to every matrix a dimension d such that d(�) = �1.

Using (7.21), the dimension of the matrix Ai is given by d(Ai) = i�1 and d(DM) =

�1. Then we obtain the following intrinsic characterization of a word in the

expansion of �. It is a word D such that for every splitting into two words

D = W1W2, where W2 has at least one letter, we have

d(W1) � 0 and d(D) = �1 : (7.23)

2This notation originated from an earlier version of the proof where the perturbative ex-

pansion of � was calculated diagrammatically and the diagrams were denoted by D. Although

we will not use diagrams here, note that they are very useful in calculating the perturbative

expansion of the solution.

111



Note that (7.23) is a necessary and suÆcient condition for a word to be in the

expansion of � .

Suppose that W is an arbitrary word such that d(W ) = �1. Then, as we will

show, there is a unique cyclic permutation D of W such that D is a term in the

expansion of �. Let us write W = DN1DN2 : : :DNk
W1, where DN1 is the shortest

word starting from the �rst letter such that d(DN1) = �1. DNi
is de�ned in the

same way, except we start from the �rst letter after the word DNi�1
. FinallyW1 is

whatever is left over. We use the notation DNi
since they correspond to terms in

the � expansion. To see this, note that the total dimension of a word can increase

or decrease when a letter is added on the right, but if it decreases it can only do

so by one unit. This is when the letter added is A0. Combining this with the fact

that DNi
is the shortest word which satis�es d(DNi

) = �1 then implies that if DNi

is a product of two words the dimension of the �rst word is greater than or equal

to zero. This is just the condition (7.23). Then using the fact that d(W1) = k� 1

one can check that the cyclic permutation of W de�ned as D = W1DN1 : : :DNk

satis�es (7.23), thus it belongs to the expansion of �. Note that all the other

cyclic permutations lead to words that are not in the expansion. Assuming the

converse implies that two distinct terms in the expansion can be related by a cyclic

permutation. But this is impossible: if we write D =W1W2, then d(W1) � 0 and

thus d(W2) � �1, so that its cyclic permutation W2W1 does not satisfy (7.23). A

similar argument can be used to show that all di�erent cyclic permutations of a

term in the expansion of � lead to distinct words.
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Consider the trace of the sum of all distinct words of dimension d = �1 and

of order ai in Ai. We can group together all words that are cyclic permutations of

each other, and replace each group by a single word with coeÆcient
PN

i=0 ai. Using

the result of the previous paragraph, we can choose this word to satisfy (7.23).

Thus we have

Tr

0@ X
order faig

DM

1A =

 
NX
i=0

ai

!�1
Tr

0@ X
order faig

W

1A ; (7.24)

where the sum in the right hand side is over all distinct words of some �xed order

faig and of dimension d(W ) = �1.

We de�ne the symmetrization operator S as a linear operator acting on mono-

mials as

S(Aa0
0
Aa1
1
: : : AaN

N ) =
a0!a1! : : : aN !�PN

i=0 ai
�
!

0@ X
order faig

W

1A ; (7.25)

where the sum is over distinct words of �xed order faig. Equivalently, a word

can be symmetrized by averaging over all permutations of its letters. Not all

permutations give distinct words and this accounts for the numerator on the right

side of equation (7.25). The normalization of S is such that on commutative Ai's

S acts as the identity.

Combining (7.24) and (7.25), we can obtain the solution for the trace of � to

all orders

Tr� =
X
faigP

(i�1)ai=�1

�PN
i=0 ai � 1

�
!

a0!a1! : : : aN !
Tr S(Aa0

0
Aa1
1
: : : AaN

N ) ; (7.26)

where the sum is over all sets faig restricted to words of dimension d = �1 . More

generally, if the Ai's are considered to be the generators of an associative algebra,
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we can replace the trace in (7.26) with the cyclic average operator which was

de�ned in [85]. This is true since in the proof we only used the cyclic property of the

trace which also holds for the cyclic average operator. Therefore, the solution � can

be written as a sum of symmetric polynomials and terms which are commutators.

This is the statement we set out to prove. Notice that our derivation implies that

the coeÆcients in (7.26) are all integers.

Using the same kind of arguments we used to derive equation (7.26), we can

also prove that the trace of positive powers of � is given by

Tr�r = r
X
faigP

(i�1)ai=�r

�PN
i=0 ai � 1

�
!

a0!a1! : : : aN !
Tr S(Aa0

0
Aa1
1
: : : AaN

N ) : (7.27)

Furthermore we can write a generating function for (7.27)

Tr log(1� �) = Tr log(1�
NX
i=0

Ai)
���
d<0

: (7.28)

On the right hand side of (7.28) one must expand the logarithm and restrict the

sum to words of negative dimension. Since d(�r) = �r we can obtain (7.27)

by extracting the dimension d = �r terms from the right hand side of (7.28).

Note that all the terms in the expansion of Tr log(1�PN
i=0Ai) are automatically

symmetrized.

It is possible to give a simple proof of (7.28) without going through the com-

binatoric arguments above, which however give a construction of the solution and

its powers themselves, not only their trace. First note that we can rewrite equa-

tion (7.21) as

1�
NX
i=0

Ai = 1� ��
NX
k=1

Ak(1� �k)
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The right hand side factorizes

1�
NX
i=0

Ai = (1�
NX
k=1

k�1X
m=0

Ak�
m)(1� �) :

Under the trace we can use the fundamental property of the logarithm, even for

noncommutative objects, and obtain

Tr log(1�
NX
i=0

Ai) = Tr log(1�
NX
k=1

k�1X
m=0

Ak�
m) + Tr log(1� �) :

Using d(Ak) = k � 1 and d(�) = �1 we have d(Ak�
m) = k � m � 1 and we see

that all the words in the argument of the �rst logarithm on the right hand side

have semi-positive dimension. Since all the words in the expansion of the second

term have negative dimension we obtain (7.28).

If the coeÆcient AN is unity, we have the following identity for the symmetriza-

tion operator

S(Aa0
0
Aa1
1
: : : AaN

N )jAN=1 = S(Aa0
0
Aa1
1
: : : A

aN�1

N�1 ) :

This is obviously true up to normalization; the normalization can be checked in

the commutative case.

The trace of the solution of (7.16) can now be obtained from (7.26) by taking

N = 2 and setting A2 to unity. The restriction on the sum of (7.26) in this case

reads a0 � a2 = 1. The sum can then be rewritten

Tr� =
1X

a0=1

1X
a1=0

(2a0 + a1 � 2)!

a0! a1! (a0 � 1)!
Tr S(Aa0

0
Aa1
1
) : (7.29)

Using � = Q, A0 = q, A1 = p� q, the combinatoric identity0B@ a+ b

c

1CA =
min(a;c)X

m=max(0;c�b)

0B@ a

m

1CA
0B@ b

c�m

1CA
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and the resummation identities

X
r�1

rX
a=0

=
1X
a=0

1X
r=max(a;1)

;

1X
r=max(a;1)

1X
b=r�a+1

=
1X

b=max(1;2�a)

a+b�1X
r=max(a;1)

one can show that (7.29) reduces to (7.19).
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Chapter 8

Extensions of the Born-Infeld Action

In this �nal chapter, we discuss extensions of our results from Chapter 7. In

Section 8.1, we argue that by replacing the complex gauge �elds of Chapter 7 with

real ones, we obtain a Born-Infeld theory with the maximal duality group. We

discuss supersymmetric extensions in Section 8.2. And �nally, in Section 8.3, we

�nd that similar Born-Infeld theories can be de�ned in 
at spacetime of any even

dimension.

8.1 Real Field Strengths

We now show that our results imply the existence of a Born-Infeld theory

with n real �eld strengths which is duality invariant under the maximal duality

group Sp(2n; IR). We �rst study the case without scalar �elds, i.e. S1 = 0 and

S2 = R = 1. Consider a Lagrangian L = L(�; �) which describes a self-dual

theory with complex gauge �elds. We will assume that the Lagrangian is a sum

of traces (or of products of traces) of monomials in � and � . It follows that

this Lagrangian satis�es the self-duality equations (6.30). This remains true in

the special case that � and � are real. That is L = L(�; �) satis�es the self-

duality equation (6.30) with � = �T = �� and � = �T = ��. We now recall that
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equation (6.30) is also the self-duality condition for Lagrangians with real gauge

�elds provided that � and � are de�ned in the following way

�ab =
1

4
F a
RF

b
R ; �ab =

1

4
eF a
RF

b
R ; (8.1)

where F a
R denotes a real �eld strength. This implies that the theory described

by the Lagrangian LR = L(�(F a
R ); �(F

a
R )) is self-dual with duality group U(n),

the maximal compact subgroup of Sp(2n; IR). The duality group can be ex-

tended to the full noncompact Sp(2n; IR), the maximal duality group of n real

�eld strengths [3], by introducing the scalar �elds S via the prescription (6.17)

which also applies to the real case provided S is symmetric [64].

In our case the Lagrangian L = Tr [�1(b�; b�) + S1�; ] ; where �(b�; b�) is the
solution of (7.15), de�nes a duality invariant theory because it is obtained from

the Lagrangian with auxiliary �elds (7.1) that is explicitly self-dual. Therefore

LR = Tr [�1(b�; b�) + S1�; ] ; with the �eld strengths taken real is also self-dual.

Using (7.20) we obtain an explicit formula for the Born-Infeld Lagrangian with

real gauge �elds describing an Sp(2n; IR) duality invariant theory

LR = Tr [ 1� S
q
1 + 2b�� b�2 + S1� ] :

8.2 Supersymmetric Theory

In this section, we brie
y discuss supersymmetric versions of some of the

Lagrangians introduced. First, we discuss the supersymmetric form of the La-

grangian (7.1). Consider the super�elds V a = 1p
2
(V a

1
+ iV a

2
) and �V a = 1p

2
(V a

1
�
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iV a
2
) where V a

1
and V a

2
are real vector super�elds, and de�ne

W a
� = �1

4
�D2D�V

a ; �W a
� = �1

4
�D2D�

�V a :

Both W a and �W a are chiral super�elds and can be used to construct a matrix of

chiral super�elds

Mab � W a �W b :

The supersymmetric version of the Lagrangian (7.1) is then given by

L = Re
Z
d2�

�
Tr (i(�� S)�� i

2
� �D2(�S2�

y)� i�M)

�
; (8.2)

where S, � and � denote chiral super�elds with the same symmetry properties

as their corresponding bosonic �elds. While the bosonic �elds S and � appearing

in (7.1) are the lowest component of the super�elds denoted by the same letter,

the �eld � in the action (7.1) is the highest component of the super�eld �. A

supersymmetric kinetic term for the scalar �eld S can be written using the K�ahler

potential (7.3) as described in [86].

Just as in the bosonic Born-Infeld, one would like to eliminate the auxiliary

�elds. However we have not been able to do this exactly except for n = 1, and

unlike the bosonic case we do not even have a conjectured form of the Lagrangian

without auxiliary �elds. For n = 1 just as in the bosonic case the theory with

auxiliary �elds also admits both a real and a complex version, i.e. we can also

consider a Lagrangian with a single real super�eld. Then we can integrate out the

auxiliary super�elds and obtain the supersymmetric version of (7.20)

L =
Z
d4�

S2

2
W 2 �W 2

1� A+
p
1� 2A+B2

+Re

�Z
d2�(� i

2
SW 2)

�
; (8.3)
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where

A =
1

4
(D2(S2W

2) + �D2(S2 �W
2)) ; B =

1

4
(D2(S2W

2)� �D2(S2 �W
2)) :

If we only want a U(1) duality invariance we can set S = i and then the action (8.3)

reduces to the supersymmetric Born-Infeld action described in [57, 58, 59].

In the case of weak �elds, the �rst term of (8.3) can be neglected and the La-

grangian is quadratic in the �eld strengths. Under these conditions, the combined

requirements of supersymmetry and self duality can be used [87] to constrain the

form of the weak coupling limit of the e�ective Lagrangian from string theory.

8.3 Extension to Arbitrary Even Dimensions

In a space-time of arbitrary even dimension, D = 2p we de�ne the matrices

�ab =
1

p!
F a
�1:::�p

�F b �1:::�p ; �ab =
1

p!
~F a
�1:::�p

�F b �1:::�p ; (8.4)

where ~F a
�1:::�p

= 1=p! "�1:::�p�1:::�pF
a �1:::�p is the Hodge dual of F a. The dual �eld

strength is given by

~Ga
�1:::�p

� p!
@L

@ �F a �1:::�p
; ~�G

a

�1:::�p
� p!

@L

@F a �1:::�p
:

Since
eeF = (�1)p+1F and ~FG = (�1)pF ~G, for all even dimensions the matrix � is

hermitian, while � is hermitian if D = 4� and anti-hermitian if D = 4� + 2. It is

also convenient to de�ne

N =

8><>: �� i� ; if D = 4� ;

�+ � ; if D = 4� + 2 :
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With these de�nitions the Lagrangian (7.1) gives a U(n; n) duality invariant theory

in arbitrary even dimensions.

However, if the dimension of space-time is D = 4� + 2, where � is integer it is

convenient to make the following �eld rede�nitions

� = i� ; S = iS :

The new �elds have the decomposition

� = ��1 + �2 ; S = �S1 + S2 ;

where �1 and S1 are hermitian and �2 and S2 are anti-hermitian. The minus sign

was introduced so that we have

S1 = S2 : (8.5)

Then S1 is positive de�nite and we can write S1 = RyR with R an arbitrary

nonsingular n-dimensional matrix.

We also perform a similarity transformation on the U(n; n) duality group, such

that the transformation properties of the new �elds simplify. Let us de�ne two

2n-dimensional matrices with the block form

IK =

0B@ 0 1

�1 0

1CA ; IH =

0B@ 0 1

1 0

1CA ;

and let the matrices T and M have the block decomposition

M =

0B@ a b

c d

1CA ; T =

0B@ a b

c d

1CA :
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Then one can de�ne the U(n; n) group as the group of matrices satisfying either

one of the two relations

M IKM y = IK ; T IHT y = IH : (8.6)

The two de�nitions are related by a unitary transformation M = U�1TU where

U =

0B@ ei�=4 0

0 e�i�=4

1CA : (8.7)

The n-dimensional matrices a, b, c and d satisfy

ayd+ cyb = 1 ; cya+ ayc = 0 ; byd+ dyb = 0 : (8.8)

The action of U(n; n) on the scalar �elds is given by

S 0 = (aS + b)(cS + d)�1 ;

�0 = (a� + b)(c� + d)�1 ; (8.9)

�0 = (c� + d)�(�cSy + d)y :

Note that the positivity of S1 is compatible with the above transformation law of

S.

The Lagrangian, written in terms of the rede�ned �elds, takes the form

L = Re

�
Tr ((�� S)�� 1

2
��S1�y + �N )

�
: (8.10)

Our conjecture regarding the Lagrangian without auxiliary �elds is independent

of the dimension of space-time and if it holds we can eliminate the auxiliary �elds

to obtain the Lagrangian

L = Tr [ 1� S
q
1 + 2b�+ b�2 + S2� ] ; (8.11)
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where

b� = R�Ry ; (8.12)

b� = R�Ry :

Note also that S2 appears in the last term of the Lagrangian (8.11), and this is

consistent with S2 and � being anti-hermitian in space-times of odd half dimension.

Also, there is a change of sign in front of the �̂2 term under the square root in (8.11)

due to the change in the de�nition of N .

If the half-dimension of space-time is odd it is consistent to take all the �elds

to be real in either the Lagrangian with auxiliary �elds (8.10), or in the La-

grangian (8.11) where the auxiliary �elds have been eliminated. Then we obtain

a theory invariant under an O(n; n) duality group. It was shown in [60, 64] that

the maximal connected duality group for a theory of dimension D = 4� + 2 with

n antisymmetric tensors is SO(n; n). In the analysis of [60, 64] only in�nitesimal

duality transformations were considered, and from these one can only show dual-

ity under the connected component of the group. In [62, 63] the group O(n; n)

was considered. Note that, as discussed in Appendix C, O(n; n) has four disjoint

components embedded in U(n; n) which is a connected group. Finally, one can

also obtain a theory invariant under the O(n)�O(n) maximal compact subgroup

of O(n; n) by setting S = �1 in the Lagrangian (8.11).
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Appendix A

Chiral Spinor Representations of SO(d; d jZ)

In the �rst part of this appendix it will be shown that the Weyl spinor repre-

sentations of SO(d; d jZ) are integral, i.e. have matrix elements which are integers.

In the �nal part, it is proven that for d = 3 the Weyl spinor representation is in

fact isomorphic to SL(4;Z).

The gamma matrices obeying (2.47), where the metric has the form (2.45),

are already, up to normalization, the standard creation and annihilation operators

used to generate the Fock space for Dirac spinors in the Weyl basis. These are

de�ned as

a
y
i = 
i=

p
2; ai = 
d+i=

p
2

and satisfy the canonical anti-commutation relations

fai; ayjg = Æij; fai; ajg = fayi ; ayjg = 0; i; j = 1; : : : ; d:

As usual, the Dirac spinor and vector representations are related through for-

mula (2.46) in the main text

S�1
s S = � p
s 
p:

To prove that the Weyl spinor representations are integral we will use a theorem

presented in [38] where it was shown that the whole group SO(d; d jZ) is generated
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by a special subset of group elements. An explicit construction of the Weyl spinor

representation matrices corresponding to the group elements in that subset is given

and shown to be integral. The subset contains three types of elements. The �rst

type are generators of the form0B@ Id n

0 Id

1CA ; nT = �n : (A.1)

The second type of generators forming a SL(d;Z)� Z2 subgroup have the form0B@ R 0

0 RT�1

1CA ; detR = �1: (A.2)

These are the T-duality generators corresponding to a change of basis of the of

the compacti�cation lattice.

The �nal generator is given by0BBBBBBBBBBBBBB@

0 1

0 1

Id�2 0d�2

1 0

1 0

0d�2 Id�2

1CCCCCCCCCCCCCCA
: (A.3)

It corresponds to T-duality along the x1 and x2 coordinates. The full dual-

ity group is in fact O(d; d jZ) but here we will only consider its restriction to

SO(d; d jZ) which is the subgroup that does not exchange Type IIA and IIB.

The full T-duality group is then obtained by adding to the above list one more

generator corresponding to T-duality in a single direction.

Using (2.46) one can check that the Dirac spinor representation corresponding
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to the �rst type of generator (A.1) is

exp(
1

2
nijaiaj): (A.4)

This has a �nite expansion and is manifestly integer valued in the standard Fock

space basis obtained by acting with the creation operators on a vacuum state.

One can prove that the full SL(d;Z) group is generated by its SL(2;Z)ij sub-

groups acting on the xi and xj coordinates. One can use this to �nd the spinor rep-

resentation matrices corresponding to generators of the second type (A.2). Since

each SL(2;Z)ij is generated by its Tij and Sij transformations, which in the (ij)

subspace where i < j have the form0B@ 1 1

0 1

1CA ;
0B@ 0 �1

1 0

1CA ;
it is enough to �nd the spinor matrices for these generators. The spinor represen-

tation of Tij is given by

exp(aia
y
j): (A.5)

The exponential (A.5) has a �nite expansion and its matrix elements are integer

valued. Similarly the spinor representation of Sij is given by

exp(
�

2
(a
y
jai � ayiaj)): (A.6)

Let us de�ne A = a
y
jai � a

y
iaj for �xed values of i and j. In terms of number

operators Ni = a
y
iai we have A

2 = �Ni�Nj +2NiNj. Since Ni can be either zero

or one, A2 is zero or minus one. The Fock space can be split into a direct sum

of two subspaces, de�ned by the eigenvalues of A2. On the subspace de�ned by
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A2 = 0, one also has A = 0 and thus the spinor representation (A.6) reduces to

the identity. On the subspace de�ned by A2 = �1, the exponential can be written

as cos(�=2) + A sin(�=2) = A. On both subspaces, the representation matrix of

the transformation is integer valued. A formula for the spinor representation of

the Sij generators which is valid on both subspaces is given by, 1 + A + A2. The

second type of generator (A.2) also contains elements with detR = �1. A spinor

transformation corresponding to such a generator is given by

1� 2ay1a1: (A.7)

Finally, the generator (A.3) has the spinor representation

exp(
�

2
(a1 � ay1)(a2 � ay2)): (A.8)

It has a �nite expansion given by (a1 � ay1)(a2 � ay2), which can be obtained using

((a1 � ay1)(a2 � ay2))2 = �1, and in this form it is manifestly integral.

Since the Fock space basis used splits into two subsets of de�nite chirality, it

follows that the Weyl spinor representations of SO(d; d jZ) are also integral.

In the remainder of the appendix it is shown that the Weyl spinor repre-

sentation of SO(3; 3jZ) is isomorphic to SL(4;Z). First note that for the Lie

algebra corresponding to the continuous Lie groups we have the equivalence

so(3; 3 jR) �= sl(4;R). The spinor representation of the �rst group is isomorphic

to the fundamental of the second. Since in the �rst part of the appendix it was

shown that the spinor representations are integral it is reasonable to expect that

they form a subgroup of SL(4;Z). In fact we will show that they are isomorphic

127



to the whole SL(4;Z) group.

One can represent the Weyl spinor state nj0i+ 1

2
M ija

y
ia
y
jj0i as the column

0BBBBBBB@

n

M23

M31

M12

1CCCCCCCA : (A.9)

Using operators of the form (A.5) and (A.6) one generates an SL(3;Z) subgroup

of the form 0B@ 1 0

0 R

1CA (A.10)

where R is the same matrix appearing in (A.2). We will now show that the Weyl

spinor representation also contains SL(2;Z)1i subgroups which act on the �rst and

the i+1 entries of the column spinor (A.9). These subgroups together with (A.10)

generate the entire SL(4;Z) group. The T-duality generator (A.8), denoted below

T12, has the Weyl spinor representation

T12 =

0BBBBBBB@

0 0 0 �1
0 0 �1 0

0 1 0 0

1 0 0 0

1CCCCCCCA :

Let us also consider a transformation G given by

G =

0BBBBBBB@

1 0 0 0

0 1 0 0

0 0 a b

0 0 c d

1CCCCCCCA ; ad� bc = 1;

which is an element of an SL(2;Z) subgroup of elements of the form (A.10). By
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conjugating G with the T12 generator

T�1
12
GT12 =

0BBBBBBB@

d c 0 0

b a 0 0

0 0 1 0

0 0 0 1

1CCCCCCCA ; (A.11)

one �nds an SL(2;Z)12 transformation acting on the �rst and second entries.

All the other SL(2;Z)1i subgroups can be obtained by conjugating (A.11) with

elements of the form (A.10). Thus we have found Weyl spinor representations

generating the entire SL(4;Z) group. In fact the representation is isomorphic to

SL(4;Z) since all the spinor representation matrices (A.4), (A.5), (A.6), (A.7) and

(A.8) are integral and have unit determinant.
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Appendix B

Duality Invariants at Small Compacti�cation

Volume

This Appendix contains some mathematical results regarding the spinor rep-

resentation of the T-duality group and duality invariant quantities in the small

volume limit. The group SO(d; d) is the group of 2d-dimensional matrices � sat-

isfying �J�T = J where J is a matrix with the block form

J =

0B@ 0 1

1 0

1CA :
It will be useful to know how to calculate the Weyl spinor representation matrix

of an SO(3; 3) group element � with the block form

� =

0B@ A B
C D

1CA :
First note that if A is invertible � has a block Gauss decomposition

� =

0B@ 1 0

CA�1 1

1CA
0B@ A 0

0 A�T

1CA
0B@ 1 A�1B

0 1

1CA ; (B.1)

where one can show using the group relations that CA�1 and A�1B are antisym-

metric. This decomposition is in fact true for generic SO(d; d) matrices. For d = 3

one can give the explicit spinor representation matrices for each factor in (B) thus
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obtaining the spinor representation of a generic SO(3; 3) matrix �

S =

0B@ 1 0

�(CA�1) 1

1CA
0B@ detA1=2 0

0 detA�1=2A

1CA
0B@ 1 �(A�1B)T

0 1

1CA : (B.2)

The star denotes the duality operator. When acting on antisymmetric 3-

dimensional square matrices it gives the dual column matrix.

Invariants can be constructed using two column matrices transforming in the

vector representation of SO(d; d jZ) and the symmetric SO(d; d jZ) matrixM

(rT ; sT )M
0B@ u

v

1CA :
In the limit when G goes to zero, using the block Gauss decomposition ofM

M =

0B@ 1 0

B 1

1CA
0B@ G�1 0

0 G

1CA
0B@ 1 �B

0 1

1CA ; (B.3)

and after identifying B with � one obtains the following invariant1

(r � �s)TG�1(u� �v):

Using the transformation of G under the duality group (1.5) one can write the

transformation of u� �v

(�u� ���v) = (C� +D)�T (u��v): (B.4)

The spinor representation matrix ofM can be calculated using (B.2)

S(M) =

0B@ 1 0

b 1

1CA
0B@ detG�1=2 0

0 detG1=2G�1

1CA
0B@ 1 bT

0 1

1CA :
1To obtain a �nite result, one should insert appropriate factors of �0 in (B.3) and also take

�0 to zero as discussed in the Introduction.
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Then one can also form the invariants �TS(M)� using two chiral spinors

� =

0BBBBBBB@

�0

�1

�2

�3

1CCCCCCCA ; � =

0BBBBBBB@

�0

�1

�2

�3

1CCCCCCCA :

In the limit of vanishing G, the invariant becomes

(�0 +
1

2
"ijk�ij�k)

p
detG�1 (�0 +

1

2
"ijk�ij�k): (B.5)

From (B.5) one obtains the following transformation law

��0 +
1

2
"ijk ��ij ��k = j det (C�+D)j�1=2 (�0 + 1

2
"ijk�ij�k): (B.6)

One can also check the relations (B.4) and (B.6) directly using the transforma-

tions (1.4) of �.

Given two chiral spinors � and � �rst write them as Dirac spinors

�D =

0B@ �

0

1CA ; �D =

0B@ �

0

1CA :
Then using the same de�nition for ai and ayi as in Appendix A one can form the

SO(3; 3 jZ) vector 0B@ ui

vi

1CA = ��D

0B@ a
y
i

ai

1CA�D: (B.7)

where ��D = �yT . Here T is a matrix acting on Dirac spinors and plays the same

role as 
0 when one forms barred spinors in Minkowski space. It is given by

T = (ay1 + a1)(ay2 + a2)(ay3 + a3):

Writing out all the spinor components in (B.7) one has0B@ ui

vi

1CA =

0B@ �i�0 � �0�i
"ijk�j�k

1CA : (B.8)
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Then u��v transforms as in (B.4) under the duality group. Such an expression,

involving two chiral spinors and �, is used in the main text.
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Appendix C

Parametrizations of Coset Spaces G=H

In this appendix we show that the �eld S provides a global parametrization

of the coset space G=H where G is U(n; n), Sp(2n; IR) or O(n; n) and H is the

maximal compact subgroup of G. We will concentrate on U(n; n) but the same

argument applies for the other groups.

Cosets are equivalence classes of group elements g of G under right multipli-

cation with arbitrary elements h of H

g � gh :

We denote the coset containing g by gH. The maximal compact subgroup of G is

de�ned as

H � fh 2 G j hhy = hyh = 1g :

It is the intersection of U(n; n) with U(2n) i.e. U(n)� U(n).

Next consider the map � : G=H ! C de�ned by

�(gH) = ggy ;

where

C = fs 2 G j sy = s; s positive de�niteg
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is the subset of hermitian positive de�nite group elements of G. This map is

well de�ned since for any two elements g and g0 in the same coset, g0 = gh and

g0g0y = ghhygy = ggy. Furthermore this map is one to one. We show �rst that the

map is surjective. Let s be an arbitrary hermitian positive de�nite element of G.

Then

s =

0B@ a b

c d

1CA =

0B@ 1 bd�1

0 1

1CA
0B@ d�y 0

0 d

1CA
0B@ 1 0

d�1c 1

1CA : (C.1)

The last equality in (C.1) can be checked using the group relations (6.16). The

decomposition exists whenever d is invertible, but since s is positive de�nite and

d is the restriction of s on an n-dimensional subspace d is also positive de�nite.

Note also that dy = d and (bd�1)y = bd�1 = d�1c. Then g de�ned as

g =

0B@ 1 bd�1

0 1

1CA
0B@ d�1=2

0 d1=2

1CA
satis�es s = ggy, thus the map � is surjective. To show that the map is also

injective note that ggy = g0g0y is equivalent to g0�1g(g0�1g)y = 1. Then h = g0�1g

is an element of G satisfying hhy = 1, that is it belongs to the maximal compact

subgroup H and we have g = g0h so g and g0 belong to the same coset.

If we de�ne S2 = d�1 and S1 = bd�1 we can rewrite (C.1) as

s =

0B@ 1 S1

0 1

1CA
0B@ S2 0

0 S�12

1CA
0B@ 1 0

S1 1

1CA :

This decomposition can also be written in terms of S2 and S = S1 + iS2 as

s = i

0B@ 0 1

�1 0

1CA+

0B@ 0 Sy

0 1

1CA
0B@ S�12 0

0 S�12

1CA
0B@ 0 0

S 1

1CA : (C.2)
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Left multiplication on the group G induces an action of the group G on the coset

space

s0 =

0B@ a b

c d

1CA s
0B@ a b

c d

1CA
y

:

Using the decomposition (C.2) one can easily show that the fractional transforma-

tion (6.19) of S is equivalent to this action. The form (C.2) is very convenient since

the �rst term is invariant under the action, while the second term only contains

S and S2 and these have the simple transformation properties (6.19) and (6.21).

If we make all the matrices above real we obtain the parametrizations of

Sp(2n; IR)=U(n). If we change the basis with the unitary matrix U de�ned

in (8.7) and then require all the matrices to be real we obtain the coset space

O(n; n)=O(n)�O(n).

Since the map � is injective we see that S, such that S2 is positive de�nite, is a

global coordinate on the coset space U(n; n)=U(n) � U(n). Thus this coset space

is connected. The group U(n; n) is a principal bundle over U(n; n)=U(n) � U(n)

with a U(n)� U(n) �ber. The number of disconnected components of a principal

bundle with a connected base is at most equal to the number of components of

the �ber which in this case is one. Thus U(n; n) is connected. Using the same

argument one can show that Sp(2n; IR) is connected while O(n; n) has at most

four components. By an argument similar to the one used for the Lorentz group

one can show that there are at least four components. Thus, as mentioned in

Section 8.3, O(n; n) has exactly four components.
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